Identification of key genes for fish adaptation to freshwater and seawater based on attention mechanism

Salvato in:
Dettagli Bibliografici
Pubblicato in:BMC Genomics vol. 26 (2025), p. 1-17
Autore principale: Qian, Songping
Altri autori: Zhao, Youjie, Liu, Fangrong, Liu, Lei, Zhou, Qingyang, Zhang, Shunrong, Cao, Yong
Pubblicazione:
Springer Nature B.V.
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3257227716
003 UK-CbPIL
022 |a 1471-2164 
024 7 |a 10.1186/s12864-025-12089-5  |2 doi 
035 |a 3257227716 
045 2 |b d20250101  |b d20251231 
084 |a 58495  |2 nlm 
100 1 |a Qian, Songping 
245 1 |a Identification of key genes for fish adaptation to freshwater and seawater based on attention mechanism 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a The evolutionary divergence of freshwater and marine fish reflects their adaptation to distinct ecological environments, with differences evident in their morphological traits, physiological functions, and genomic structures. Traditional molecular methods often fail to uncover the intricate regulatory relationships among genes under environmental stress. This study proposes the weighted attention gene analysis (WAGA) model, a novel approach that integrates natural language processing (NLP) for protein-coding gene feature representation with deep learning and self-attention (SA) mechanisms. WAGA effectively identifies key genes associated with sensory functions, osmoregulation, and growth and development on the basis of attention weights. The experimental results highlight its effectiveness in revealing genes crucial for ecological adaptation and evolution. This approach is essential for elucidating the mechanisms of ecological adaptability and evolutionary processes, while also offering novel insights and tools to support targeted breeding in aquaculture and fish genomics research. 
610 4 |a FishBase 
653 |a Chemical analysis 
653 |a Physiology 
653 |a Freshwater fish 
653 |a Accuracy 
653 |a Seawater 
653 |a Deep learning 
653 |a Bioinformatics 
653 |a Marine fish 
653 |a Genes 
653 |a Data mining 
653 |a Adaptation 
653 |a Water analysis 
653 |a Genomes 
653 |a Osmoregulation 
653 |a Genomics 
653 |a Habitats 
653 |a Fish 
653 |a Evolutionary genetics 
653 |a Statistical analysis 
653 |a Proteins 
653 |a Gene expression 
653 |a Artificial intelligence 
653 |a Sensitivity analysis 
653 |a Evolution & development 
653 |a Environmental stress 
653 |a Ecological adaptation 
653 |a Aquaculture 
653 |a Algorithms 
653 |a Natural language processing 
653 |a Environmental 
700 1 |a Zhao, Youjie 
700 1 |a Liu, Fangrong 
700 1 |a Liu, Lei 
700 1 |a Zhou, Qingyang 
700 1 |a Zhang, Shunrong 
700 1 |a Cao, Yong 
773 0 |t BMC Genomics  |g vol. 26 (2025), p. 1-17 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3257227716/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3257227716/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3257227716/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch