Computational modelling and sensitivity analysis of heat transfer in ternary nanofluids using response surface methodology

Guardado en:
書目詳細資料
發表在:Journal of Computational Design and Engineering vol. 12, no. 8 (Aug 2025), p. 173-193
主要作者: Haq, Sami Ul
其他作者: Ashraf, Muhammad Bilal, Tanveer, Arooj, Ro, Jongsuk, Awwad, Fuad A, Ismail, Emad A A
出版:
Oxford University Press
主題:
在線閱讀:Citation/Abstract
Full Text - PDF
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
Resumen:This study investigates the thermal optimization of ternary nanofluids, especially focusing on sensitivity analysis of the physical parameters. This study provides an efficient thermal management system that is essential in sophisticated cooling systems, such as electric vehicle battery packs and aerospace engines, to avoid overheating and maintain uniform temperature distribution. A statistical approach is used to analyze the skin friction and heat transfer rate via Response Surface Methodology and Analysis of Variance. Furthermore, irreversibility analysis is also calculated, arising due to Joule heating and viscous dissipation. A non-similar transformation is used to convert the boundary layer equations into dimensionless partial differential equations. The system of partial differential equations is converted into an ordinary differential equation using a local non-similar method up to second-order truncation. These systems of ordinary differential equations are solved numerically via bvp4c. Sensitivity analysis is performed for drag force and heat transfer rate for input parameters. The correlations between input factors and output responses are created via the use of analysis of variance tables, which is beneficial for regression analysis. The high values of \({{R}^2} = 99.84\% ,\ {{R}^2}( {\mathrm{ Adj}} ) = 99.70\% \) for drag force and \({{R}^2} = 99.97\% ,\ {{R}^2}( {\rm Adj} ) = 99.94\% \) for heat transfer rate show that high validity of analysis of variance results is obtained to perform sensitivity analysis. The results conclude that the Hartmann number is the most impactful factor among other parameters for friction and heat transfer rate at the surface. The Eckert number and volume fraction coefficient are caused to rise in entropy generation.
ISSN:2288-5048
DOI:10.1093/jcde/qwaf071
Fuente:Engineering Database