A risk prediction method for change propagation based on industrial design network evolution

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Computational Design and Engineering vol. 12, no. 8 (Aug 2025), p. 361-382
Autor principal: Sun, Yiwei
Altres autors: Wang, Yao, Zhang, Xian, Chen, Dengkai
Publicat:
Oxford University Press
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3258457305
003 UK-CbPIL
022 |a 2288-5048 
024 7 |a 10.1093/jcde/qwaf084  |2 doi 
035 |a 3258457305 
045 2 |b d20250801  |b d20250831 
100 1 |a Sun, Yiwei  |u School of Mechanical Engineering, Northwestern Polytechnical University, Youyi West Road, Xian, Shaanxi, China 
245 1 |a A risk prediction method for change propagation based on industrial design network evolution 
260 |b Oxford University Press  |c Aug 2025 
513 |a Journal Article 
520 3 |a In the process of complex product design, rapid design changes bring product development risk. The study of complex product change propagation is an important means to reduce change risks. Traditional methods model the product structure into a network and predict the impact of change propagation through network attributes. However, these methods ignore the form elements of industrial design based on product structure, and the influence mechanism of the designer in the process of change propagation. To explore the influence of industrial design in change propagation, this study proposes a risk prediction method for industrial design change propagation based on complex network evolution. A comprehensive evaluation method based on network and design scheme correlation characteristics is developed to map the structure layer and the form layer, resulting in a multilayer industrial design network model. By extracting influencing factors from designers, a designer-constrained and driven industrial design change propagation and evolution method is established to simulate the real-world influence of design team behavior and support dynamic risk prediction. Finally, the effectiveness and reliability of the method are verified through an engineering case involving the industrial design change of an intelligent cabin. For industrial design change, it performed with better accuracy and robustness. 
653 |a Propagation 
653 |a Design 
653 |a Product development 
653 |a Evolution 
653 |a Design engineering 
653 |a Multilayers 
653 |a Industrial design 
653 |a Risk 
653 |a Product design 
700 1 |a Wang, Yao  |u School of Mechanical Engineering, Northwestern Polytechnical University, Youyi West Road, Xian, Shaanxi, China 
700 1 |a Zhang, Xian  |u School of Mechanical Engineering, Northwestern Polytechnical University, Youyi West Road, Xian, Shaanxi, China 
700 1 |a Chen, Dengkai  |u School of Mechanical Engineering, Northwestern Polytechnical University, Youyi West Road, Xian, Shaanxi, China 
773 0 |t Journal of Computational Design and Engineering  |g vol. 12, no. 8 (Aug 2025), p. 361-382 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3258457305/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3258457305/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch