Empowering scientific discovery with explainable small domain-specific and large language models

Guardat en:
Dades bibliogràfiques
Publicat a:The Artificial Intelligence Review vol. 58, no. 12 (Dec 2025), p. 371
Autor principal: Yu, Hengjie
Altres autors: Wang, Yizhi, Cheng, Tao, Yan, Yan, Dawson, Kenneth A., Li, Sam F. Y., Zheng, Yefeng, Jin, Yaochu
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3258735895
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11365-w  |2 doi 
035 |a 3258735895 
045 2 |b d20251201  |b d20251231 
084 |a 68693  |2 nlm 
100 1 |a Yu, Hengjie  |u Westlake University, School of Engineering, Hangzhou, China (GRID:grid.494629.4) (ISNI:0000 0004 8008 9315); Westlake Institute for Advanced Study, Institute of Advanced Technology, Hangzhou, China (GRID:grid.511490.8) 
245 1 |a Empowering scientific discovery with explainable small domain-specific and large language models 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a As artificial intelligence (AI) increasingly integrates into scientific research, explainability has become a cornerstone for ensuring reliability and innovation in discovery processes. This review offers a forward-looking integration of explainable AI (XAI)-based research paradigms, encompassing small domain-specific models, large language models (LLMs), and agent-based large-small model collaboration. For domain-specific models, we introduce a knowledge-oriented taxonomy categorizing methods into knowledge-agnostic, knowledge-based, knowledge-infused, and knowledge-verified approaches, emphasizing the balance between domain knowledge and innovative insights. For LLMs, we examine three strategies for integrating domain knowledge—prompt engineering, retrieval-augmented generation, and supervised fine-tuning—along with advances in explainability, including local, global, and conversation-based explanations. We also envision future agent-based model collaborations within automated laboratories, stressing the need for context-aware explanations tailored to research goals. Additionally, we discuss the unique characteristics and limitations of both explainable small domain-specific models and LLMs in the realm of scientific discovery. Finally, we highlight methodological challenges, potential pitfalls, and the necessity of rigorous validation to ensure XAI’s transformative role in accelerating scientific discovery and reshaping research paradigms. 
653 |a Problem solving 
653 |a Reliability 
653 |a Knowledge 
653 |a Classification 
653 |a Discovery 
653 |a Collaboration 
653 |a Research 
653 |a Methodological problems 
653 |a Models 
653 |a Taxonomy 
653 |a Adoption of innovations 
653 |a Prompt engineering 
653 |a Laboratories 
653 |a Artificial intelligence 
653 |a Validity 
653 |a Hypotheses 
653 |a Innovations 
653 |a Medical research 
653 |a Paradigms 
653 |a Global local relationship 
653 |a Agent-based models 
653 |a Scientists 
653 |a Agnosticism 
653 |a Retrieval 
653 |a Knowledge management 
653 |a Researchers 
653 |a Automation 
653 |a Explainable artificial intelligence 
653 |a Large language models 
653 |a Empowerment 
653 |a Language modeling 
700 1 |a Wang, Yizhi  |u Westlake University, School of Engineering, Hangzhou, China (GRID:grid.494629.4) (ISNI:0000 0004 8008 9315) 
700 1 |a Cheng, Tao  |u University College London, SpaceTimeLab, Department of Civil, Environmental and Geomatic Engineering, London, UK (GRID:grid.83440.3b) (ISNI:0000 0001 2190 1201) 
700 1 |a Yan, Yan  |u University College Dublin, Centre for BioNano Interactions, School of Chemistry, Dublin 4, Ireland (GRID:grid.7886.1) (ISNI:0000 0001 0768 2743); UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, School of Biomolecular and Biomedical Science, Dublin 4, Ireland (GRID:grid.7886.1) (ISNI:0000 0001 0768 2743) 
700 1 |a Dawson, Kenneth A.  |u University College Dublin, Centre for BioNano Interactions, School of Chemistry, Dublin 4, Ireland (GRID:grid.7886.1) (ISNI:0000 0001 0768 2743) 
700 1 |a Li, Sam F. Y.  |u National University of Singapore, Department of Chemistry, Singapore, Singapore (GRID:grid.428397.3) (ISNI:0000 0004 0385 0924) 
700 1 |a Zheng, Yefeng  |u Westlake University, School of Engineering, Hangzhou, China (GRID:grid.494629.4) (ISNI:0000 0004 8008 9315); Westlake Institute for Advanced Study, Institute of Advanced Technology, Hangzhou, China (GRID:grid.511490.8) 
700 1 |a Jin, Yaochu  |u Westlake University, School of Engineering, Hangzhou, China (GRID:grid.494629.4) (ISNI:0000 0004 8008 9315); Westlake Institute for Advanced Study, Institute of Advanced Technology, Hangzhou, China (GRID:grid.511490.8) 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 12 (Dec 2025), p. 371 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3258735895/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3258735895/fulltext/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3258735895/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch