Optimization of machine tool processing scheduling based on differential evolution algorithm

Salvato in:
Dettagli Bibliografici
Pubblicato in:PLoS One vol. 20, no. 10 (Oct 2025), p. e0333691
Autore principale: Zhang, Yuehong
Altri autori: Zhang, Mianhao
Pubblicazione:
Public Library of Science
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3258938992
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0333691  |2 doi 
035 |a 3258938992 
045 2 |b d20251001  |b d20251031 
084 |a 174835  |2 nlm 
100 1 |a Zhang, Yuehong 
245 1 |a Optimization of machine tool processing scheduling based on differential evolution algorithm 
260 |b Public Library of Science  |c Oct 2025 
513 |a Journal Article 
520 3 |a Machine tool processing scheduling plays a pivotal role in modern manufacturing systems, significantly influencing production efficiency, resource utilization, and timely delivery. Due to its combinatorial and NP-hard characteristics, traditional optimization techniques often face challenges when dealing with large-scale and complex scheduling problems. In this paper, we present an optimization approach for machine tool scheduling that leverages the Differential Evolution (DE) algorithm. By tailoring DE for discrete scheduling environments through specialized encoding and decoding techniques, the algorithm is able to effectively explore the solution space while ensuring the generation of feasible schedules. The results from our experiments reveal that the proposed approach outperforms conventional heuristic methods, particularly in minimizing makespan and achieving a balanced workload distribution across machines. This study underscores the potential of DE as a robust, adaptive, and efficient optimization tool for tackling complex scheduling problems in the context of intelligent manufacturing systems. 
653 |a Adaptability 
653 |a Decoding 
653 |a Algorithms 
653 |a Combinatorial analysis 
653 |a Optimization techniques 
653 |a Machine tools 
653 |a Breakdowns 
653 |a Manufacturing 
653 |a Pareto optimum 
653 |a Energy consumption 
653 |a Intelligent manufacturing systems 
653 |a Evolutionary algorithms 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Evolution 
653 |a Mathematical programming 
653 |a Scheduling 
653 |a Evolutionary computation 
653 |a Genetic algorithms 
653 |a Decision making 
653 |a Optimization 
653 |a Solution space 
653 |a Resource utilization 
653 |a Industry 4.0 
653 |a Optimization algorithms 
653 |a Economic 
700 1 |a Zhang, Mianhao 
773 0 |t PLoS One  |g vol. 20, no. 10 (Oct 2025), p. e0333691 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3258938992/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3258938992/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3258938992/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch