On Spectral Approximations for the Stability Analysis of Boundary Layers
保存先:
| 出版年: | Computational Mathematics and Mathematical Physics vol. 65, no. 1 (Jan 2025), p. 49 |
|---|---|
| 第一著者: | |
| 出版事項: |
Springer Nature B.V.
|
| 主題: | |
| オンライン・アクセス: | Citation/Abstract Full Text Full Text - PDF |
| タグ: |
タグなし, このレコードへの初めてのタグを付けませんか!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3259037582 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 0965-5425 | ||
| 022 | |a 1555-6662 | ||
| 022 | |a 0041-5553 | ||
| 024 | 7 | |a 10.1134/S096554252470180X |2 doi | |
| 035 | |a 3259037582 | ||
| 045 | 2 | |b d20250101 |b d20250131 | |
| 084 | |a 108424 |2 nlm | ||
| 100 | 1 | |a Zasko, G. V. |u Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia (GRID:grid.4886.2) (ISNI:0000 0001 2192 9124) | |
| 245 | 1 | |a On Spectral Approximations for the Stability Analysis of Boundary Layers | |
| 260 | |b Springer Nature B.V. |c Jan 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This paper devotes to the approximation of spectral and boundary-value problems arising in the stability analysis of incompressible boundary layers. As an alternative to the collocation method with mappings, the Galerkin–collocation method based on Laguerre functions is adopted. A robust numerical implementation of the latter method is discussed. The methods are compared within the stability analysis of the Blasius and Ekman layers. The Galerkin–collocation method demonstrates an exponential convergence rate for scalar stability characteristics, and has a number of advantages. | |
| 653 | |a Velocity | ||
| 653 | |a Mathematical analysis | ||
| 653 | |a Collocation methods | ||
| 653 | |a Boundary layer stability | ||
| 653 | |a Approximation | ||
| 653 | |a Numerical analysis | ||
| 653 | |a Stability analysis | ||
| 653 | |a Methods | ||
| 653 | |a Polynomials | ||
| 653 | |a Laguerre functions | ||
| 653 | |a Galerkin method | ||
| 653 | |a Reynolds number | ||
| 653 | |a Boundary conditions | ||
| 653 | |a Boundary value problems | ||
| 773 | 0 | |t Computational Mathematics and Mathematical Physics |g vol. 65, no. 1 (Jan 2025), p. 49 | |
| 786 | 0 | |d ProQuest |t ABI/INFORM Global | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3259037582/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/3259037582/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3259037582/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch |