Intelligent tool-wear prediction for ball nose tungsten carbide cutters in milling of stainless steel HRC52 using a genetic algorithm-enhanced bi-directional long short-term memory network

Uloženo v:
Podrobná bibliografie
Vydáno v:SN Applied Sciences vol. 7, no. 10 (Oct 2025), p. 1166
Hlavní autor: Tan, Kailai
Další autoři: Liu, Zhiqiang, Jiang, Ruisong
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3259475839
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-07007-z  |2 doi 
035 |a 3259475839 
045 2 |b d20251001  |b d20251031 
100 1 |a Tan, Kailai  |u Sichuan University, School of Mechanical Engineering, Chengdu, China (GRID:grid.13291.38) (ISNI:0000 0001 0807 1581) 
245 1 |a Intelligent tool-wear prediction for ball nose tungsten carbide cutters in milling of stainless steel HRC52 using a genetic algorithm-enhanced bi-directional long short-term memory network 
260 |b Springer Nature B.V.  |c Oct 2025 
513 |a Journal Article 
520 3 |a Tool wear monitoring is crucial in machining, playing a vital role in ensuring quality and controlling costs. Inadequate control over tool wear and life can result in increased expenses or significant damage to both tools and workpieces, making accurate wear prediction essential to avoid failures. While traditional long short-term memory (LSTM) models perform well on time series data, they capture only unidirectional historical information and fail to utilize future data, limiting their effectiveness in complex wear prediction tasks. Moreover, the hyperparameter tuning process for LSTM models is complex and computationally expensive. Manual tuning methods often struggle to find a global optimum in high-dimensional spaces, leading to local optima and restricting the model's generalization capabilities. To address these limitations, this paper introduces a genetic algorithm-optimized bidirectional long short-term memory (GA-BiLSTM) model. Unlike traditional LSTM, BiLSTM captures both forward and backward time series data, enabling comprehensive utilization of sequence features. The genetic algorithm (GA) performs a global search of the hyperparameter space, automatically optimizing key parameters, thus avoiding the inefficiencies of manual tuning and significantly improving the model’s robustness and performance. Experimental results show that GA-BiLSTM reduces mean absolute error (MAE) by up to 72.0% and root mean square error (RMSE) by 64.3% on the PHM2010 dataset, demonstrating its superior predictive accuracy and practical applicability. Article Highlights<list list-type="order"><list-item></list-item>The Bi-LSTM model is synergistically combined with a genetic optimization algorithm for the first time to predict the wear of Ball Nose Tungsten Carbide Cutters. Experimental results demonstrate superior fitting capabilities compared to alternative models.<list-item>The sensor signals are precisely utilized for feature extraction in the time domain, frequency domain, and timefrequency domain. These features are filtered using the Pearson correlation coefficient, and a correlation analysis is conducted on the remaining features.</list-item><list-item>A global optimization strategy utilizing genetic algorithms is employed to fine-tune the learning rate, number of hidden layers, and training batch size of the Bi-LSTM layer.</list-item> 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Stainless steel 
653 |a Workpieces 
653 |a Deep learning 
653 |a Wavelet transforms 
653 |a Algorithms 
653 |a Optimization techniques 
653 |a Correlation analysis 
653 |a Task complexity 
653 |a Tungsten 
653 |a Nose 
653 |a Cutting tools 
653 |a Manufacturing 
653 |a Long short-term memory 
653 |a Time series 
653 |a Cutters 
653 |a Correlation coefficients 
653 |a Stainless steels 
653 |a Correlation coefficient 
653 |a Tool wear 
653 |a Efficiency 
653 |a Machine learning 
653 |a Genetic algorithms 
653 |a Carbide tools 
653 |a Predictions 
653 |a Global optimization 
653 |a Root-mean-square errors 
653 |a Milling (machining) 
653 |a Tungsten carbide 
653 |a Sensors 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Tuning 
653 |a Information processing 
653 |a Environmental 
700 1 |a Liu, Zhiqiang  |u Sichuan University, School of Mechanical Engineering, Chengdu, China (GRID:grid.13291.38) (ISNI:0000 0001 0807 1581) 
700 1 |a Jiang, Ruisong  |u Sichuan University, School of Mechanical Engineering, Chengdu, China (GRID:grid.13291.38) (ISNI:0000 0001 0807 1581) 
773 0 |t SN Applied Sciences  |g vol. 7, no. 10 (Oct 2025), p. 1166 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3259475839/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3259475839/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3259475839/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch