Single-phase full-bridge inverter control based on discrete adaptive sliding mode algorithm with error compensation

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 10 (Oct 2025), p. e0334233
Autor principal: Zhang, Yun
Otros Autores: Tang, Zhenyu, Fenghui Xu Kaichen Zhou Kun Yang
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3260040843
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0334233  |2 doi 
035 |a 3260040843 
045 2 |b d20251001  |b d20251031 
084 |a 174835  |2 nlm 
100 1 |a Zhang, Yun 
245 1 |a Single-phase full-bridge inverter control based on discrete adaptive sliding mode algorithm with error compensation 
260 |b Public Library of Science  |c Oct 2025 
513 |a Journal Article 
520 3 |a This paper proposes that the control process of the single-phase full bridge inverter circuit is equivalent to two buck circuits, and the control strategy of the DC-DC circuit is adopted to enable the output voltage to track the given sine wave target value in real time, realizing the control of the inverter circuit, simplifying the control process, and enhancing the anti-interference ability of the system. On the basis of traditional discrete sliding mode control, a new adaptive approach rate is introduced, which can dynamically adjust the control gain according to the distance between the sliding surface and the sliding band. When the state variable is far from the sliding surface, it accelerates the approach speed, and when the state variable approaches the sliding surface, it reduces the approach speed, which can effectively reduce chattering. As a result, the width level of the sliding mode band is reduced from the traditional O(T) to the same level O (T3), and the width of the sliding mode band is significantly reduced, significantly improving the control accuracy and jitter suppression ability. The proposed control method was rigorously mathematically proven in terms of sliding mode bandwidth, jitter range, and convergence steps, and the advantages of the improved method in voltage tracking speed, steady-state error, and disturbance rejection performance were verified through multiple simulation experiments. 
653 |a Load 
653 |a Sine waves 
653 |a Accuracy 
653 |a Control algorithms 
653 |a Mathematical models 
653 |a Electric potential 
653 |a Voltage 
653 |a State variable 
653 |a Inverters 
653 |a Circuits 
653 |a Sliding mode control 
653 |a Power supply 
653 |a Vibration 
653 |a Systems stability 
653 |a Control methods 
653 |a Error compensation 
653 |a Adaptive algorithms 
653 |a Economic 
653 |a Environmental 
700 1 |a Tang, Zhenyu 
700 1 |a Fenghui Xu Kaichen Zhou Kun Yang 
773 0 |t PLoS One  |g vol. 20, no. 10 (Oct 2025), p. e0334233 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3260040843/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3260040843/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3260040843/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch