ACPAS: an expert-assistance system for authenticating ancient Chinese paintings via LLM-based agents

Guardat en:
Dades bibliogràfiques
Publicat a:Heritage Science vol. 13, no. 1 (Dec 2025), p. 512
Autor principal: Chen, Xiaojiao
Altres autors: Li, Yueying, Chen, Yonghao, Tang, Tan, Wang, Ruihan, Wang, Yifan, Feng, Yingchaojie, Chen, Wei, Wang, Xiaosong
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3260124808
003 UK-CbPIL
022 |a 2050-7445 
024 7 |a 10.1038/s40494-025-02093-z  |2 doi 
035 |a 3260124808 
045 2 |b d20251201  |b d20251231 
084 |a 243040  |2 nlm 
100 1 |a Chen, Xiaojiao  |u Zhejiang University, Laboratory of Art and Archaeology Image, Ministry of Education, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X) 
245 1 |a ACPAS: an expert-assistance system for authenticating ancient Chinese paintings via LLM-based agents 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Authentication of ancient Chinese paintings is crucial to protecting and preserving cultural heritage. However, traditional authentication methods rely heavily on expert knowledge and experience, and are difficult to handle unstructured and multimodal information. In addition, the lack of interactive tools also hinders humanities scholars from effectively applying advanced technologies. In this study, we present ACPAS, an intelligent authentication system that enables an expert-led, AI-assisted authentication model. The system uses Large Language models (LLMs) to interpret the needs of experts and assigns them to the corresponding tool modules for processing. It integrates image processing, text retrieval, and structured databases, and employs interactive visualizations to support reasoning. Case studies and user evaluations demonstrate that ACPAS improves efficiency and results in interpretability. It provides a new paradigm for cultural heritage protection and digital humanities research and promotes the deep integration of artificial intelligence and humanities. 
653 |a Calligraphy 
653 |a Collaboration 
653 |a Large language models 
653 |a Artificial intelligence 
653 |a Knowledge 
653 |a Optimization 
653 |a Authenticity 
653 |a Unstructured data 
653 |a Digital humanities 
653 |a Image processing 
653 |a Inscriptions 
653 |a Cultural resources 
653 |a Efficiency 
653 |a Cultural heritage 
653 |a Painting 
700 1 |a Li, Yueying  |u Zhejiang University, Laboratory of Art and Archaeology Image, Ministry of Education, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X) 
700 1 |a Chen, Yonghao  |u Zhejiang University, Laboratory of Art and Archaeology Image, Ministry of Education, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X) 
700 1 |a Tang, Tan  |u Zhejiang University, Laboratory of Art and Archaeology Image, Ministry of Education, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X) 
700 1 |a Wang, Ruihan  |u Zhejiang University, Laboratory of Art and Archaeology Image, Ministry of Education, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X) 
700 1 |a Wang, Yifan  |u Zhejiang University, Laboratory of Art and Archaeology Image, Ministry of Education, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X) 
700 1 |a Feng, Yingchaojie  |u Zhejiang University, State Key Lab of CAD&CG, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X) 
700 1 |a Chen, Wei  |u Zhejiang University, State Key Lab of CAD&CG, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X) 
700 1 |a Wang, Xiaosong  |u Zhejiang University, Laboratory of Art and Archaeology Image, Ministry of Education, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X) 
773 0 |t Heritage Science  |g vol. 13, no. 1 (Dec 2025), p. 512 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3260124808/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3260124808/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3260124808/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch