Processing and Analysis of Data from Fiscal Electronic Cash Registers in the Context of IoT and Big Data

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Studies in Informatics and Control vol. 34, no. 2 (2025), p. 107-117
Κύριος συγγραφέας: BARBU, Dragoș-Cătălin
Άλλοι συγγραφείς: BÂRA, Adela, OPREA, Simona-Vasilica
Έκδοση:
National Institute for Research and Development in Informatics
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
Περιγραφή
Περίληψη:This paper proposes a framework for processing and analysing fiscal data from electronic cash registers using Big Data and IoT. The system is designed for handling large volumes of transactional data by integrating data collection, cleaning, transformation, and analysis through a modular architecture based on microservices, distributed messaging, and both relational and NoSQL databases. Before carrying out the data analysis, the missing or inconsistent values are addressed using regression models, which enhances data quality. In order to contribute to anomaly detection in fiscal activities, the proposed platform supports statistical analysis, time series analysis, and pattern recognition. Real-world data-based tests revealed that the proposed technological solution can help the tax authorities track data compliance and increase the effectiveness of fiscal data operations.
ISSN:1220-1766
DOI:10.24846/v34i2y202510
Πηγή:Publicly Available Content Database