Marine melt in three dimensional Greenlandic sill fjord simulations

Na minha lista:
Detalhes bibliográficos
Publicado no:Journal of Glaciology vol. 71 (Jul 2025)
Autor principal: Wiskandt, Jonathan
Outros Autores: Koszalka, Inga Monika, Nelsone, Laura, Nilsson, Johan
Publicado em:
Cambridge University Press
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3260288611
003 UK-CbPIL
022 |a 0022-1430 
022 |a 1727-5652 
024 7 |a 10.1017/jog.2025.10073  |2 doi 
035 |a 3260288611 
045 2 |b d20250701  |b d20250731 
100 1 |a Wiskandt, Jonathan  |u Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 
245 1 |a Marine melt in three dimensional Greenlandic sill fjord simulations 
260 |b Cambridge University Press  |c Jul 2025 
513 |a Journal Article 
520 3 |a Submarine glacier melt rates of the Greenland Ice Sheet remain a major uncertainty in climate model projections of future sea level rise. Development of submarine melt parameterizations has to a high degree relied on ocean circulation modelling of glacial fjords, designed to quantify effects such as ocean thermal forcing and fjord–glacier geometry. Greenlandic fjords are relatively narrow, and it is frequently assumed that across-fjord flow variations are small enough to allow marine melt to be quantified with two-dimensional ocean-circulation models. Here, we present three-dimensional model simulations showing that the interplay between fjord–glacier geometry, side wall friction, and Earth’s rotation makes the circulation in ice-shelf cavities three-dimensional even in narrow fjords. Remarkably, we find that Earth’s rotation changes the flow pattern in the cavity below the ice shelf, leading to a decrease in the marine melt on a 10 km wide ice shelf by a factor of five compared to a non-rotating simulation. Our study prompts using three-dimensional model configurations of Greenlandic fjords. 
651 4 |a Antarctica 
651 4 |a Greenland 
653 |a Surface water 
653 |a Glaciers 
653 |a Rotation 
653 |a Fjords 
653 |a Sea level rise 
653 |a Sea level changes 
653 |a Ocean currents 
653 |a Ice shelves 
653 |a General circulation models 
653 |a Glaciation 
653 |a Flow pattern 
653 |a Simulation 
653 |a Ocean circulation 
653 |a Ice 
653 |a Land ice 
653 |a Ice sheets 
653 |a Three dimensional models 
653 |a Salinity 
653 |a Holes 
653 |a Flow distribution 
653 |a Wall friction 
653 |a Ocean models 
653 |a Circulation 
653 |a Glacier melting 
653 |a Greenland ice sheet 
653 |a Water circulation 
653 |a Ocean circulation models 
653 |a Oceans 
653 |a Temperature 
653 |a Climate models 
653 |a Environmental 
700 1 |a Koszalka, Inga Monika  |u Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 
700 1 |a Nelsone, Laura  |u Department of Meteorology, Stockholm University, Stockholm, Sweden 
700 1 |a Nilsson, Johan  |u Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 
773 0 |t Journal of Glaciology  |g vol. 71 (Jul 2025) 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3260288611/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3260288611/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3260288611/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch