Implementing multi-criteria decision-making approaches to evaluate and map drought vulnerability with Geospatial Artificial Intelligence (Geo-AI) based investigations

Gardado en:
Detalles Bibliográficos
Publicado en:SN Applied Sciences vol. 7, no. 10 (Oct 2025), p. 1185
Autor Principal: Shalwee
Outros autores: Dhupper, Renu, Kumari, Maya, Gupta, Anil Kumar, Kumar, Deepak
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3260580306
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-07189-6  |2 doi 
035 |a 3260580306 
045 2 |b d20251001  |b d20251031 
100 1 |a Shalwee  |u Amity Institute of Environmental Sciences (AIES), Amity University Uttar Pradesh, Noida, India (GRID:grid.444644.2) (ISNI:0000 0004 1805 0217) 
245 1 |a Implementing multi-criteria decision-making approaches to evaluate and map drought vulnerability with Geospatial Artificial Intelligence (Geo-AI) based investigations 
260 |b Springer Nature B.V.  |c Oct 2025 
513 |a Journal Article 
520 3 |a Assessing and mitigating drought vulnerability is crucial in the context of global climate change. This research aims to improve the precision of drought vulnerability assessments in future. The study identifies key parameters that influence drought vulnerability and integrates environmental, social, and economic factors to develop a comprehensive framework for accurate drought vulnerability mapping. This enhanced accuracy is vital for resource management and mitigation planning in drought-prone regions. The study focuses on the Ranchi district in Jharkhand, India, to analyse various types of droughts with suitable drought vulnerability parameters. An expert survey was conducted to consider the significance of these parameters that implement multi-criteria decision-making (MCDM) entropy approaches. The study weighted parameters according to different drought types, including meteorological, hydrological, and agricultural, for detailed analysis. The findings highlight the potential of MCDM methods in generating high-resolution and accurate drought vulnerability assessments, significantly contributing to sustainable water resource management and resilience-building efforts. The synthesis of spatial data from remote sensing and GIS with socio-economic, environmental, and hydrological criteria creates a comprehensive drought vulnerability model. The final drought vulnerability map for the district revealed that 15% of the area is under severe drought conditions, while 71% is moderately affected. Hydrological drought was identified as the primary cause of vulnerability, indicating a critical need to improve the district's hydrological reservoirs. Geo-AI techniques, such as machine learning and deep learning algorithms, will analyse complex spatial and temporal patterns in drought-affected regions. This research highlights the transformative role of AI-driven decision-making frameworks in addressing complex environmental challenges to provide valuable insights for policymakers and resource managers in implementing targeted drought mitigation strategies. 
651 4 |a India 
653 |a Climate change 
653 |a Spatial analysis 
653 |a Socioeconomic factors 
653 |a Humidity 
653 |a Artificial intelligence 
653 |a Water resources management 
653 |a Assessments 
653 |a Surface water 
653 |a Trends 
653 |a Multiple criterion 
653 |a Drought 
653 |a Remote sensing 
653 |a Population density 
653 |a Hydrology 
653 |a Machine learning 
653 |a Decision making 
653 |a Economic factors 
653 |a Deep learning 
653 |a Radiation 
653 |a Resource management 
653 |a Economics 
653 |a Agriculture 
653 |a Vegetation 
653 |a Parameter identification 
653 |a Global climate 
653 |a Precipitation 
653 |a Spatial data 
653 |a Groundwater 
653 |a Land use 
653 |a Literature reviews 
653 |a Stream flow 
653 |a Rain 
653 |a Environmental 
700 1 |a Dhupper, Renu  |u Amity Institute of Environmental Sciences (AIES), Amity University Uttar Pradesh, Noida, India (GRID:grid.444644.2) (ISNI:0000 0004 1805 0217) 
700 1 |a Kumari, Maya  |u Amity University Uttar Pradesh, Amity School of Natural Resources and Sustainable Development (ASNRD), Noida, India (GRID:grid.444644.2) (ISNI:0000 0004 1805 0217) 
700 1 |a Gupta, Anil Kumar  |u Integrated Center for Adaptation Climate Change Disaster Risk Reduction and Sustainability (ICARS), IIT Roorkee-Greater Noida Extension Centre (GNEC), Greater Noida, India (GRID:grid.19003.3b) (ISNI:0000 0000 9429 752X); National Institute of Disaster Management (NIDM), Rohini, Delhi, India (GRID:grid.502755.0) 
700 1 |a Kumar, Deepak  |u Texas Tech University, Atmospheric Sciences Group, Department of Geosciences, College of Arts & Sciences, Texas, USA (GRID:grid.264784.b) (ISNI:0000 0001 2186 7496) 
773 0 |t SN Applied Sciences  |g vol. 7, no. 10 (Oct 2025), p. 1185 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3260580306/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3260580306/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3260580306/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch