MARC

LEADER 00000nab a2200000uu 4500
001 3260843934
003 UK-CbPIL
022 |a 0197-6664 
022 |a 0014-7214 
024 7 |a 10.1111/fare.13198  |2 doi 
035 |a 3260843934 
045 2 |b d20250701  |b d20250731 
084 |a 30198  |2 nlm 
100 1 |a Jang, Wonkyung  |u Jeannine Rainbolt College of Education, University of Oklahoma, Norman, OK 
245 1 |a Leveraging natural language processing to deepen understanding of parent–child interaction processes and language development 
260 |b National Council on Family Relations  |c Jul 2025 
513 |a Journal Article 
520 3 |a Objective: The current study aimed to analyze the finegrained processes of parent-child interactions using modern machine learning and natural language processing algorithms. Background: Although many studies have used audio samples to predict children's language development, they have primarily focused on the frequency of language exposure rather than complex semantic relationships and the effects of context and learner variability. Method: This study examined whether children exhibit greater syntactic development when parents engage in semantically relevant conversations during mealtime and toy play, using semantic network algorithms. Additionally, it investigated gender differences in conversational topics during toy play using topic modeling and word embedding algorithms. Data from the Home-School Study of Language and Literacy Development Corpus, focusing on a subset of 62 children, were analyzed. Results: Key findings revealed the clustering coefficient for semantic networks during mealtime was positively associated with children's syntactic development. Furthermore, Bidirectional Encoder Representations from Transformers and Word2Vec algorithms showed that boys and girls had different conversational focuses during toy play, with boys gravitating toward action verbs and physical activities, and girls toward social and relational themes. Implications: These findings highlight the importance of incorporating semantically relevant conversations into daily routines to support children's syntactic development. They also emphasize the need for tailored interventions that consider context and gender differences in parent- child interactions. Future research should leverage artificial intelligence (AI)-driven language processing to refine interventions, strengthen parent engagement, and inform policies that promote equitable early language learning. Conclusion: Semantically relevant conversations during mealtime significantly enhanced children's syntactic development, and gender differences in conversational content during toy play reflected distinct linguistic focuses. This study confirms and extends existing literature, suggesting that AI-driven measures could provide a more granular and nuanced understanding of children's language learning environments. 
653 |a Intervention 
653 |a Conversation 
653 |a Families & family life 
653 |a Bidirectionality 
653 |a Socioeconomic status 
653 |a Artificial intelligence 
653 |a Algorithms 
653 |a Low income groups 
653 |a Children 
653 |a Girls 
653 |a Language acquisition 
653 |a Linguistics 
653 |a Boys 
653 |a Clustering 
653 |a Parent-child relations 
653 |a Semantics 
653 |a Gender differences 
653 |a Language 
653 |a Parents & parenting 
653 |a Socioeconomic factors 
653 |a Child development 
653 |a Learning environment 
653 |a Play 
653 |a Machine learning 
653 |a Semantic networks 
653 |a Natural language processing 
653 |a Semantic complexity 
653 |a Corpus analysis 
653 |a Syntax 
653 |a Child language 
653 |a Literacy 
653 |a Native language acquisition 
653 |a Data Collection 
653 |a Child Role 
653 |a Coding 
653 |a Family Environment 
653 |a Adults 
653 |a Individual Differences 
653 |a Comparative Analysis 
653 |a Language Processing 
653 |a Child Rearing 
653 |a Educational Environment 
653 |a Developmental Stages 
653 |a Activity Units 
653 |a Language Skills 
653 |a Family Role 
653 |a Computers 
653 |a Young Children 
653 |a Educational Psychology 
653 |a Computational Linguistics 
700 1 |a Horm, Diane  |u Jeannine Rainbolt College of Education, University of Oklahoma, Norman, OK 
700 1 |a Kwon, Kyong-Ah  |u Jeannine Rainbolt College of Education, University of Oklahoma, Norman, OK 
700 1 |a Lu, Kun  |u School of Library and Information Studies, University of Oklahoma, Norman, OK 
700 1 |a Kasak, Ryan  |u Dodge Family College of Arts and Sciences, University of Oklahoma, Norman, OK 
700 1 |a Park, Ji Hwan 
773 0 |t Family Relations  |g vol. 74, no. 3 (Jul 2025), p. 1146-1174 
786 0 |d ProQuest  |t Sociology Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3260843934/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch