A Hybrid Memetic and Set Partitioning Optimization Framework for Decision Support in Industrial Transportation: A Case Study of Employee Shuttle Routing

Na minha lista:
Detalhes bibliográficos
Publicado no:Journal Europeen des Systemes Automatises vol. 58, no. 2 (Feb 2025), p. 191-204
Autor principal: Bideq, Hajar
Outros Autores: Ouaddi, Khaoula, Ellaia, Rachid
Publicado em:
International Information and Engineering Technology Association (IIETA)
Assuntos:
Acesso em linha:Citation/Abstract
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3261046841
003 UK-CbPIL
022 |a 1269-6935 
022 |a 2116-7087 
024 7 |a 10.18280/jesa.580201  |2 doi 
035 |a 3261046841 
045 2 |b d20250201  |b d20250228 
100 1 |a Bideq, Hajar 
245 1 |a A Hybrid Memetic and Set Partitioning Optimization Framework for Decision Support in Industrial Transportation: A Case Study of Employee Shuttle Routing 
260 |b International Information and Engineering Technology Association (IIETA)  |c Feb 2025 
513 |a Journal Article 
520 3 |a Designing cost-effective shuttle services for large-scale industrial companies presents a significant challenge in the transportation industry. This challenge arises from the need to balance high-quality service with cost-effectiveness while considering various practical constraints. In this context, we introduce a novel approach to help decision-makers address Employee Shuttle Bus Routing Problems (ESBRP). Our method combines the Memetic Algorithm (MA), a metaheuristic, with the Set Partitioning Problem (SPP) model, an exact algorithm. The proposed framework consists of two phases: (1) generating routes that adhere to the real-world constraints of the ESBRP using the MA, and (2) allocating these routes to a heterogeneous fleet of vehicles by optimally solving the SPP Model. A unique feature of our approach is the extension of the framework to enable the transition from addressing the single-load scenario of the ESBRP problem to solving the mixed-load scenario. This transition is achieved by implementing the Single to Mixed Loads Heuristic (SMH). This paper presents the results of thorough computational tests conducted on multiple data instances of varying sizes. Additionally, we develop a mixed-integer programming (MIP) model for the ESBRP to compare and evaluate the results of the proposed framework. By assessing solution quality and execution times on small and moderate-sized data instances, the experiments demonstrate that the proposed approach is efficient and often generates near-optimal solutions. 
653 |a School buses 
653 |a Restrictions 
653 |a Scheduling 
653 |a Integer programming 
653 |a Algorithms 
653 |a Costs 
653 |a Planning 
653 |a Employees 
653 |a Case studies 
653 |a Vehicles 
700 1 |a Ouaddi, Khaoula 
700 1 |a Ellaia, Rachid 
773 0 |t Journal Europeen des Systemes Automatises  |g vol. 58, no. 2 (Feb 2025), p. 191-204 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261046841/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261046841/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch