Classification of Bearing Fault Signals in Rotating Machinery Using Neural Networks

Guardado en:
Detalles Bibliográficos
Publicado en:Journal Europeen des Systemes Automatises vol. 58, no. 1 (Jan 2025), p. 89-97
Autor principal: Retz Mahima Devarapalli
Otros Autores: Kontham, Raja Kumar, Kontham, John David Christopher
Publicado:
International Information and Engineering Technology Association (IIETA)
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3261046845
003 UK-CbPIL
022 |a 1269-6935 
022 |a 2116-7087 
024 7 |a 10.18280/jesa.580110  |2 doi 
035 |a 3261046845 
045 2 |b d20250101  |b d20250131 
100 1 |a Retz Mahima Devarapalli 
245 1 |a Classification of Bearing Fault Signals in Rotating Machinery Using Neural Networks 
260 |b International Information and Engineering Technology Association (IIETA)  |c Jan 2025 
513 |a Journal Article 
520 3 |a Rotating Machinery is a vital component in the manufacturing process. Its health conditions directly affect production, and any failure of the Machinery may reduce production and cause accidents. Condition-based monitoring detects faults in the early stages, which, in turn, reduces machine failures. Machine learning condition monitoring has made remarkable achievements in fault detection, but it requires various feature calculations and is a time-consuming process. Recently, deep learning-based models outperformed traditional machine learning techniques as they automatically identify features through the learning process. This paper proposes a deep-learning model to classify bearing faults, specifically a convolution Neural Network Model (CNN) and Convolution Invariant Neural Network (CINN). The bearing dataset from Case Western Reserve University (CWRU) is used for training and testing the proposed CNN and CINN Models. The performance of model is evaluated on different working conditions of the bearing faults with varying loads, demonstrating 99% and above accuracy. 
653 |a Predictive maintenance 
653 |a Accuracy 
653 |a Datasets 
653 |a Deep learning 
653 |a Wavelet transforms 
653 |a Fourier transforms 
653 |a Fault diagnosis 
653 |a Bearings 
653 |a Machinery 
653 |a Sensors 
653 |a Neural networks 
653 |a Classification 
653 |a Breakdowns 
653 |a Vibration 
700 1 |a Kontham, Raja Kumar 
700 1 |a Kontham, John David Christopher 
773 0 |t Journal Europeen des Systemes Automatises  |g vol. 58, no. 1 (Jan 2025), p. 89-97 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261046845/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261046845/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch