SLW-YOLO: A Hybrid Soybean Parent Phenotypic Consistency Detection Model Based on Deep Learning

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture vol. 15, no. 19 (2025), p. 2001-2026
1. Verfasser: Yu, Chuntao
Weitere Verfasser: Li, Jinyang, Shi Wenqiang, Qi Liqiang, Guan Zheyun, Zhang, Wei, Zhang Chunbao
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3261049576
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15192001  |2 doi 
035 |a 3261049576 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Yu, Chuntao  |u College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China; yuchuntao0122@163.com (C.Y.); ljy970118@163.com (J.L.); byndswq@163.com (W.S.); heavenxiaohuya@163.com (L.Q.) 
245 1 |a SLW-YOLO: A Hybrid Soybean Parent Phenotypic Consistency Detection Model Based on Deep Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a During hybrid soybean seed production, the parents’ phenotypic consistency is assessed by breeders to ensure the purity of soybean seeds. Detection traits encompass the hypocotyl, leaf, pubescence, and flower. To achieve the detection of hybrid soybean parents’ phenotypic consistency in the field, a self-propelled image acquisition platform was used to obtain soybean plant image datasets. In this study, the Large Selective Kernel Network (LSKNet) attention mechanism module, the detection layer Small Network (SNet), dedicated to detecting small objects, and the Wise Intersection over Union v3 (WIoU v3) loss function were added into the YOLOv5s network to establish the hybrid soybean parent phenotypic consistency detection model SLW-YOLO. The SLW-YOLO achieved the following: F1 score: 92.3%; mAP: 94.8%; detection speed: 88.3 FPS; and model size: 45.1 MB. Compared to the YOLOv5s model, the SLW-YOLO model exhibited an improvement in F1 score by 6.1% and in mAP by 5.4%. There was a decrease in detection speed by 42.1 FPS, and an increase in model size by 31.4 MB. The parent phenotypic consistency detected by the SLW-YOLO model was 98.9%, consistent with manual evaluation. Therefore, this study demonstrates the potential of using deep learning technology to identify phenotypic consistency in the seed production of large-scale hybrid soybean varieties. 
610 4 |a Qualcomm Inc 
651 4 |a United States--US 
653 |a Soybeans 
653 |a Crop production 
653 |a Accuracy 
653 |a Datasets 
653 |a Deep learning 
653 |a Flowers & plants 
653 |a Image acquisition 
653 |a Object recognition 
653 |a Seeds 
653 |a Environmental 
700 1 |a Li, Jinyang  |u College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China; yuchuntao0122@163.com (C.Y.); ljy970118@163.com (J.L.); byndswq@163.com (W.S.); heavenxiaohuya@163.com (L.Q.) 
700 1 |a Shi Wenqiang  |u College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China; yuchuntao0122@163.com (C.Y.); ljy970118@163.com (J.L.); byndswq@163.com (W.S.); heavenxiaohuya@163.com (L.Q.) 
700 1 |a Qi Liqiang  |u College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China; yuchuntao0122@163.com (C.Y.); ljy970118@163.com (J.L.); byndswq@163.com (W.S.); heavenxiaohuya@163.com (L.Q.) 
700 1 |a Guan Zheyun  |u Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs/Soybean Research Institute, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China; zyguan@jaas.com.cn 
700 1 |a Zhang, Wei  |u College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China; yuchuntao0122@163.com (C.Y.); ljy970118@163.com (J.L.); byndswq@163.com (W.S.); heavenxiaohuya@163.com (L.Q.) 
700 1 |a Zhang Chunbao  |u Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs/Soybean Research Institute, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China; zyguan@jaas.com.cn 
773 0 |t Agriculture  |g vol. 15, no. 19 (2025), p. 2001-2026 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261049576/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3261049576/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261049576/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch