A PSO-VMD-LSTM-Based Photovoltaic Power Forecasting Model Incorporating PV Converter Characteristics

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 19 (2025), p. 10612-10626
Autor principal: Pan Hailong
Otros Autores: Li, Chao, Xiao Fuming, Zhou, Hai, Zhu Binxin
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3261055098
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app151910612  |2 doi 
035 |a 3261055098 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Pan Hailong  |u China State Grid Yichun Electric Power Supply Company, Yichun 336000, China; panhailong623@163.com (H.P.); lichao8501347@163.com (C.L.); 18807957837@163.com (F.X.) 
245 1 |a A PSO-VMD-LSTM-Based Photovoltaic Power Forecasting Model Incorporating PV Converter Characteristics 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a High-precision photovoltaic (PV) power generation prediction models are essential for ensuring secure and stable grid operation and optimized dispatch. Existing models often ignore the significant variations in PV grid-connected inverter loss distributions and exhibit inadequate data decomposition processing, which influences the accuracy of the prediction models. This paper proposes a PSO-VMD-LSTM prediction model that includes PV converter loss characteristics. Firstly, the Particle Swarm Optimization (PSO) algorithm is employed to optimize the parameters of Variational Mode Decomposition (VMD), enabling effective decomposition of data under different weather conditions. Secondly, the decomposed sub-modes are individually fed into Long Short-Term Memory (LSTM) networks for prediction, and the results are subsequently reconstructed to obtain preliminary predictions. Finally, a neural network-based equivalent model for inverter losses is constructed; the preliminary predictions are fed into this model to obtain the final prediction results. Simulation case studies demonstrate that the proposed PSO-VMD-LSTM-based model can comprehensively consider the impact of uneven converter loss distribution and effectively improve the accuracy of PV power prediction models. 
653 |a Data processing 
653 |a Accuracy 
653 |a Random variables 
653 |a Fourier transforms 
653 |a Forecasting 
653 |a Bandwidths 
653 |a Optimization algorithms 
653 |a Signal processing 
653 |a Statistical methods 
653 |a Neural networks 
653 |a Efficiency 
700 1 |a Li, Chao  |u China State Grid Yichun Electric Power Supply Company, Yichun 336000, China; panhailong623@163.com (H.P.); lichao8501347@163.com (C.L.); 18807957837@163.com (F.X.) 
700 1 |a Xiao Fuming  |u China State Grid Yichun Electric Power Supply Company, Yichun 336000, China; panhailong623@163.com (H.P.); lichao8501347@163.com (C.L.); 18807957837@163.com (F.X.) 
700 1 |a Zhou, Hai  |u College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China; zhubinxin@ctgu.edu.cn 
700 1 |a Zhu Binxin  |u College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China; zhubinxin@ctgu.edu.cn 
773 0 |t Applied Sciences  |g vol. 15, no. 19 (2025), p. 10612-10626 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261055098/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3261055098/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261055098/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch