Modeling and Systematic Analysis of Grinding Behavior for Overburden, Saprolite, and Their Mixtures

Gardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 19 (2025), p. 10740-10754
Autor Principal: Correa-Cala Yunior
Outros autores: Toro, Norman, Oliveros, Silvente Yabriel, Angulo-Palma, Hugo Javier, Reyes Roger Samuel Almenares, Ramirez Ayelen Dominguez, Pedrera Carlos Hernández, Salazar, Iván, Gallegos, Sandra, Galleguillos-Madrid Felipe M., Saldana, Manuel, Soliz Alvaro
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3261055522
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app151910740  |2 doi 
035 |a 3261055522 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Correa-Cala Yunior  |u Departamento de Metalurgia Química, Universidad de Moa, Moa 83330, Holguín, Cuba; ycorreacala@gmail.com (Y.C.-C.); hangulo@cil.moa.minem.cu (H.J.A.-P.); ralmenaresr@gmail.com (R.S.A.R.) 
245 1 |a Modeling and Systematic Analysis of Grinding Behavior for Overburden, Saprolite, and Their Mixtures 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To date, the grinding behavior of saprolite and lateritic overburden mixtures remains poorly understood. The Bond Work Index (BWI) is the principal indicator used to determine the specific energy consumption during the grinding process. To establish the F80 and P80 values, granulometric distribution models—Rosin–Rammler (RR), Gates–Gaudin–Schuhmann (GGS), and the Swebrec function (SWEF)—were evaluated. The mineral phases of the feed samples were analyzed by X-ray powder diffraction. This study provides evidence that the RR function is the most suitable for simulating the particle size distribution of the feed material, with residual errors below 6.30% and a coefficient of determination (R2) exceeding 97%. After the grinding equilibrium cycle is reached, the SWEF model proves to be the most appropriate, exhibiting residual errors under 3.50% and R2 values above 98%. BWI reveals that saprolite is the most difficult ore to grind, with specific energy consumption increasing from 16.38 kWh/t to 25.50 kWh/t as the proportion of saprolite in the mixture rises. This reflects a clear upward trend, as confirmed by a fitted model with an R2 of 98.54%. In contrast, the grindability index (Gbp) decreases, indicating that the material becomes increasingly resistant to grinding as the saprolite content increases. This may be attributed to inherent material properties, such as hardness, or to physical phenomena related to fragmentation. The declining Gbp further suggests that greater energy input is required to achieve additional particle size reduction. Overall, the findings demonstrate that saprolite is inherently difficult to grind and behaves according to its own grinding characteristics, regardless of whether it is processed alone or in combination with lateritic overburden. 
651 4 |a United Kingdom--UK 
653 |a Aluminum 
653 |a Mineralogy 
653 |a Particle size 
653 |a Minerals 
653 |a Mineral processing 
653 |a Chemical elements 
653 |a Energy consumption 
653 |a Iron 
700 1 |a Toro, Norman  |u Faculty of Engineering and Architecture, Universidad Arturo Prat, Iquique 1100000, Chile; chichined@gmail.com (S.G.); masaldana@unap.cl (M.S.) 
700 1 |a Oliveros, Silvente Yabriel  |u Centro de Investigaciones del Níquel Alberto Fernández Montes de Oca (CEDINIQ), Moa 83330, Holguín, Cuba; yabrieloliveros@gmail.com 
700 1 |a Angulo-Palma, Hugo Javier  |u Departamento de Metalurgia Química, Universidad de Moa, Moa 83330, Holguín, Cuba; ycorreacala@gmail.com (Y.C.-C.); hangulo@cil.moa.minem.cu (H.J.A.-P.); ralmenaresr@gmail.com (R.S.A.R.) 
700 1 |a Reyes Roger Samuel Almenares  |u Departamento de Metalurgia Química, Universidad de Moa, Moa 83330, Holguín, Cuba; ycorreacala@gmail.com (Y.C.-C.); hangulo@cil.moa.minem.cu (H.J.A.-P.); ralmenaresr@gmail.com (R.S.A.R.) 
700 1 |a Ramirez Ayelen Dominguez  |u Facultad de Ingeniería Química y Agronomía, Universidad de Oriente, Santiago de Cuba 90500, Cuba; ayelendominguezramirez@gmail.com (A.D.R.); pedrera@uo.edu.cu (C.H.P.) 
700 1 |a Pedrera Carlos Hernández  |u Facultad de Ingeniería Química y Agronomía, Universidad de Oriente, Santiago de Cuba 90500, Cuba; ayelendominguezramirez@gmail.com (A.D.R.); pedrera@uo.edu.cu (C.H.P.) 
700 1 |a Salazar, Iván  |u Departamento de Ingeniería Civil, Universidad Católica del Norte, Antofagasta 1270709, Chile 
700 1 |a Gallegos, Sandra  |u Faculty of Engineering and Architecture, Universidad Arturo Prat, Iquique 1100000, Chile; chichined@gmail.com (S.G.); masaldana@unap.cl (M.S.) 
700 1 |a Galleguillos-Madrid Felipe M.  |u Centro de Desarrollo Energético Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile; felipe.galleguillos.madrid@uantof.cl 
700 1 |a Saldana, Manuel  |u Faculty of Engineering and Architecture, Universidad Arturo Prat, Iquique 1100000, Chile; chichined@gmail.com (S.G.); masaldana@unap.cl (M.S.) 
700 1 |a Soliz Alvaro  |u Departamento de Ingeniería en Metalurgia, Universidad de Atacama, Copiapó 1530000, Chile 
773 0 |t Applied Sciences  |g vol. 15, no. 19 (2025), p. 10740-10754 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261055522/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3261055522/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261055522/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch