Seismic Performance Evaluation of RC–Masonry Hybrid Systems: A Comparative Study with İsa Divanli Mosque as a Case Example

Guardado en:
Detalles Bibliográficos
Publicado en:Buildings vol. 15, no. 19 (2025), p. 3462-3489
Autor principal: Ozdemir, Muhammed Alperen
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Reinforced concrete (RC)–masonry hybrid systems are commonly found in both historical renovations and modern constructions, particularly in seismic regions. While combining the ductility of RC with the mass and stiffness of masonry offers potential advantages, these systems often exhibit complex and unpredictable seismic behavior due to the differing mechanical characteristics of the two materials. This study aims to evaluate the benefits and drawbacks of RC–masonry hybrid systems by performing a comparative numerical analysis of three structural configurations. As a representative case study, the historical İsa Divanlı Mosque in Kahramanmaraş, Turkey—severely damaged during the 6 February 2023 earthquakes—is modeled under three scenarios: (Configuration A) full RC structure with shear walls, (Configuration B) unreinforced masonry, and (Configuration C) the existing hybrid form with an RC dome and slabs over masonry walls. Finite element models were developed for each case, and their seismic responses were analyzed under identical loading conditions. The maximum spectral displacements were 55.3 mm, 45.8 mm, and 59.5 mm for the RC, masonry, and hybrid configurations, respectively. The Normalized Displacement Index (NDI) values reached 0.666 mm/MPa for the RC and hybrid systems, while the masonry configuration remained at 0.528 mm/MPa, reflecting its brittle behavior. The findings highlight the influence of structural typology on seismic vulnerability and demonstrate the potential risks and disadvantages of hybrid systems. This study contributes to the understanding of hybrid structural behavior and offers recommendations for the design and retrofit of such systems in seismic regions.
ISSN:2075-5309
DOI:10.3390/buildings15193462
Fuente:Engineering Database