Enhanced Semantic BERT for Named Entity Recognition in Education

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics vol. 14, no. 19 (2025), p. 3951-3969
1. Verfasser: Huang, Ping
Weitere Verfasser: Zhu, Huijuan, Wang, Ying, Dai Lili, Zheng, Lei
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3261057633
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14193951  |2 doi 
035 |a 3261057633 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Huang, Ping 
245 1 |a Enhanced Semantic BERT for Named Entity Recognition in Education 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To address the technical challenges in the educational domain named entity recognition (NER), such as ambiguous entity boundaries and difficulties with nested entity identification, this study proposes an enhanced semantic BERT model (ES-BERT). The model innovatively adopts an education domain, vocabulary-assisted semantic enhancement strategy that (1) applies the term frequency–inverse document frequency (TF-IDF) algorithm to weight domain-specific terms, and (2) fuses the weighted lexical information with character-level features, enabling BERT to generate enriched, domain-aware, character–word hybrid representations. A complete bidirectional long short-term memory-conditional random field (BiLSTM-CRF) recognition framework was established, and a novel focal loss-based joint training method was introduced to optimize the process. The experimental design employed a three-phase validation protocol, as follows: (1) In a comparative evaluation using 5-fold cross-validation on our proprietary computer-education dataset, the proposed ES-BERT model yielded a precision of 90.38%, which is higher than that of the baseline models; (2) Ablation studies confirmed the contribution of domain-vocabulary enhancement to performance improvement; (3) Cross-domain experiments on the 2016 knowledge base question answering datasets and resume benchmark datasets demonstrated outstanding precision of 98.41% and 96.75%, respectively, verifying the model’s transfer-learning capability. These comprehensive experimental results substantiate that ES-BERT not only effectively resolves domain-specific NER challenges in education but also exhibits remarkable cross-domain adaptability. 
653 |a Design of experiments 
653 |a Datasets 
653 |a Dictionaries 
653 |a Semantics 
653 |a Ambiguity 
653 |a Linguistics 
653 |a Algorithms 
653 |a Conditional random fields 
653 |a Education 
653 |a Recognition 
653 |a Ablation 
700 1 |a Zhu, Huijuan 
700 1 |a Wang, Ying 
700 1 |a Dai Lili 
700 1 |a Zheng, Lei 
773 0 |t Electronics  |g vol. 14, no. 19 (2025), p. 3951-3969 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261057633/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3261057633/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261057633/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch