Dynamic Equivalence of Active Distribution Network: Multiscale and Multimodal Fusion Deep Learning Method with Automatic Parameter Tuning

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 19 (2025), p. 3213-3234
Autor principal: Wang, Wenhao
Otros Autores: Liu, Zhaoxi, Dai Fengzhe, Quan Huan
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3261084064
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13193213  |2 doi 
035 |a 3261084064 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Wang, Wenhao 
245 1 |a Dynamic Equivalence of Active Distribution Network: Multiscale and Multimodal Fusion Deep Learning Method with Automatic Parameter Tuning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Dynamic equivalence of active distribution networks (ADNs) is emerging as one of the most important issues for the backbone network security analysis due to high penetration of distributed generations (DGs) and electricity vehicles (EVs). The multiscale and multimodal fusion deep learning (MMFDL) method proposed in this paper contains two modalities, one of which is a CNN + attention module to simulate Newton Raphson power flow calculation (NRPFC) for the important feature extraction of a power system caused by disturbance, which is motivated by the similarities between NRPFC and convolution network computation. The other is a long short-term memory (LSTM) + fully connected (FC) module for load modeling based on the fact that LSTM + FC can represent a load′s differential algebraic equations (DAEs). Moreover, to better capture the relationship between voltage and power, the multiscale fusion method is used to aggregate load modeling models with different voltage input sizes and combined with CNN + attention, merging as MMFDL to represent the dynamic behaviors of ADNs. Then, the Kepler optimization algorithm (KOA) is applied to automatically tune the adjustable parameters of MMFLD (called KOA-MMFDL), especially the LSTM and FC hidden layer number, as they are important for load modeling and there is no human knowledge to set these parameters. The performance of the proposed method was evaluated by employing different electric power systems and various disturbance scenarios. The error analysis shows that the proposed method can accurately represent the dynamic response of ADNs. In addition, comparative experiments verified that the proposed method is more robust and generalizable than other advanced non-mechanism methods. 
653 |a Behavior 
653 |a Accuracy 
653 |a Electrical loads 
653 |a Deep learning 
653 |a Dynamic response 
653 |a Distributed generation 
653 |a Parameter identification 
653 |a Modelling 
653 |a Voltage 
653 |a Optimization techniques 
653 |a Artificial neural networks 
653 |a Electric vehicles 
653 |a Equivalence 
653 |a Power flow 
653 |a Error analysis 
653 |a Modules 
653 |a Machine learning 
653 |a Performance evaluation 
653 |a Electric power systems 
653 |a Electric potential 
653 |a Genetic algorithms 
653 |a Neural networks 
653 |a Methods 
653 |a Differential equations 
653 |a Parameters 
653 |a Electric power distribution 
700 1 |a Liu, Zhaoxi 
700 1 |a Dai Fengzhe 
700 1 |a Quan Huan 
773 0 |t Mathematics  |g vol. 13, no. 19 (2025), p. 3213-3234 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261084064/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3261084064/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261084064/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch