Neural Network-Based Atlas Enhancement in MPEG Immersive Video

Guardat en:
Dades bibliogràfiques
Publicat a:Mathematics vol. 13, no. 19 (2025), p. 3110-3127
Autor principal: Lee, Taesik
Altres autors: Kugjin, Yun, Won-Sik, Cheong, Dongsan, Jun
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3261084218
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13193110  |2 doi 
035 |a 3261084218 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Lee, Taesik  |u Department of Computer Engineering, Dong-A University, Busan 49315, Republic of Korea; tslee@donga-ispl.kr 
245 1 |a Neural Network-Based Atlas Enhancement in MPEG Immersive Video 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Recently, the demand for immersive videos has surged with the expansion of virtual reality, augmented reality, and metaverse technologies. As an international standard, moving picture experts group (MPEG) has developed MPEG immersive video (MIV) to efficiently transmit large-volume immersive videos. The MIV encoder generates atlas videos to convert extensive multi-view videos into low-bitrate formats. When these atlas videos are compressed using conventional video codecs, compression artifacts often appear in the reconstructed atlas videos. To address this issue, this study proposes a feature-extraction-based convolutional neural network (FECNN) to reduce the compression artifacts during MIV atlas video transmission. The proposed FECNN uses quantization parameter (QP) maps and depth information as inputs and consists of shallow feature extraction (SFE) blocks and deep feature extraction (DFE) blocks to utilize layered feature characteristics. Compared to the existing MIV, the proposed method improves the Bjontegaard delta bit-rate (BDBR) by −4.12% and −6.96% in the basic and additional views, respectively. 
653 |a Feature extraction 
653 |a Augmented reality 
653 |a Artifacts 
653 |a Codec 
653 |a Virtual reality 
653 |a Atlases 
653 |a Video recordings 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Methods 
653 |a Streaming media 
653 |a Video transmission 
653 |a MPEG encoders 
653 |a Video compression 
653 |a Efficiency 
700 1 |a Kugjin, Yun  |u Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea; kjyun@etri.re.kr (K.Y.); wscheong@etri.re.kr (W.-S.C.) 
700 1 |a Won-Sik, Cheong  |u Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea; kjyun@etri.re.kr (K.Y.); wscheong@etri.re.kr (W.-S.C.) 
700 1 |a Dongsan, Jun  |u Department of Computer Engineering, Dong-A University, Busan 49315, Republic of Korea; tslee@donga-ispl.kr 
773 0 |t Mathematics  |g vol. 13, no. 19 (2025), p. 3110-3127 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261084218/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3261084218/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261084218/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch