Neural Network-Based Atlas Enhancement in MPEG Immersive Video
Guardat en:
| Publicat a: | Mathematics vol. 13, no. 19 (2025), p. 3110-3127 |
|---|---|
| Autor principal: | |
| Altres autors: | , , |
| Publicat: |
MDPI AG
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3261084218 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2227-7390 | ||
| 024 | 7 | |a 10.3390/math13193110 |2 doi | |
| 035 | |a 3261084218 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231533 |2 nlm | ||
| 100 | 1 | |a Lee, Taesik |u Department of Computer Engineering, Dong-A University, Busan 49315, Republic of Korea; tslee@donga-ispl.kr | |
| 245 | 1 | |a Neural Network-Based Atlas Enhancement in MPEG Immersive Video | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Recently, the demand for immersive videos has surged with the expansion of virtual reality, augmented reality, and metaverse technologies. As an international standard, moving picture experts group (MPEG) has developed MPEG immersive video (MIV) to efficiently transmit large-volume immersive videos. The MIV encoder generates atlas videos to convert extensive multi-view videos into low-bitrate formats. When these atlas videos are compressed using conventional video codecs, compression artifacts often appear in the reconstructed atlas videos. To address this issue, this study proposes a feature-extraction-based convolutional neural network (FECNN) to reduce the compression artifacts during MIV atlas video transmission. The proposed FECNN uses quantization parameter (QP) maps and depth information as inputs and consists of shallow feature extraction (SFE) blocks and deep feature extraction (DFE) blocks to utilize layered feature characteristics. Compared to the existing MIV, the proposed method improves the Bjontegaard delta bit-rate (BDBR) by −4.12% and −6.96% in the basic and additional views, respectively. | |
| 653 | |a Feature extraction | ||
| 653 | |a Augmented reality | ||
| 653 | |a Artifacts | ||
| 653 | |a Codec | ||
| 653 | |a Virtual reality | ||
| 653 | |a Atlases | ||
| 653 | |a Video recordings | ||
| 653 | |a Artificial neural networks | ||
| 653 | |a Neural networks | ||
| 653 | |a Methods | ||
| 653 | |a Streaming media | ||
| 653 | |a Video transmission | ||
| 653 | |a MPEG encoders | ||
| 653 | |a Video compression | ||
| 653 | |a Efficiency | ||
| 700 | 1 | |a Kugjin, Yun |u Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea; kjyun@etri.re.kr (K.Y.); wscheong@etri.re.kr (W.-S.C.) | |
| 700 | 1 | |a Won-Sik, Cheong |u Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea; kjyun@etri.re.kr (K.Y.); wscheong@etri.re.kr (W.-S.C.) | |
| 700 | 1 | |a Dongsan, Jun |u Department of Computer Engineering, Dong-A University, Busan 49315, Republic of Korea; tslee@donga-ispl.kr | |
| 773 | 0 | |t Mathematics |g vol. 13, no. 19 (2025), p. 3110-3127 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3261084218/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3261084218/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3261084218/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch |