Analysis of a Three-Echelon Supply Chain System with Multiple Retailers, Stochastic Demand and Transportation Times

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Mathematics vol. 13, no. 19 (2025), p. 3199-3227
Váldodahkki: Varlas Georgios
Eará dahkkit: Koukoumialos Stelios, Diamantidis Alexandros, Ioannidis Evangelos
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3261084622
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13193199  |2 doi 
035 |a 3261084622 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Varlas Georgios  |u Department of Business Administration, University of the Aegean, 82100 Chios, Greece; g.varlas@aegean.gr 
245 1 |a Analysis of a Three-Echelon Supply Chain System with Multiple Retailers, Stochastic Demand and Transportation Times 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In this paper we present an exact numerical model for the evaluation of a three-echelon supply chain with multiple retailers. Poisson demand, exponentially distributed transportation times and lost sales at the retailers are assumed. The system is modeled as a continuous time Markov chain, and the analysis is based on matrix analytic methods. We analyze the infinitesimal generator matrix of the process and develop an algorithm for its construction. Performance measures for the system are calculated algorithmically from the stationary probabilities vector. The algorithm is used for an extensive numerical investigation of the system so that conclusions of managerial importance may be drawn. 
653 |a Integer programming 
653 |a Deep learning 
653 |a Markov chains 
653 |a Random variables 
653 |a Optimization 
653 |a Decomposition 
653 |a Approximation 
653 |a Manufacturers 
653 |a Order quantity 
653 |a Inventory control 
653 |a Heuristic 
653 |a Suppliers 
653 |a Mathematical programming 
653 |a Machine learning 
653 |a Dynamic programming 
653 |a Costs 
653 |a Numerical models 
653 |a Genetic algorithms 
653 |a Wholesalers 
653 |a Supply chain management 
653 |a Retail stores 
653 |a Algorithms 
653 |a Linear programming 
653 |a Warehouses 
653 |a Systematic review 
653 |a Inventory 
653 |a Supply chains 
653 |a Markov analysis 
700 1 |a Koukoumialos Stelios  |u Department of Business Administration, University of Thessaly, 41500 Larissa, Greece; skoukoum@uth.gr 
700 1 |a Diamantidis Alexandros  |u Department of Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; adiama@econ.auth.gr 
700 1 |a Ioannidis Evangelos  |u Department of Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; adiama@econ.auth.gr 
773 0 |t Mathematics  |g vol. 13, no. 19 (2025), p. 3199-3227 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261084622/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3261084622/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261084622/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch