Diffractive Neural Network Enabled Spectral Object Detection

Salvato in:
Dettagli Bibliografici
Pubblicato in:Remote Sensing vol. 17, no. 19 (2025), p. 3381-3400
Autore principale: Ma, Yijun
Altri autori: Chen, Rui, Qian Shuaicun, Sun, Shengli
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3261089301
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17193381  |2 doi 
035 |a 3261089301 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Ma, Yijun  |u Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; mayijun@mail.sitp.ac.cn (Y.M.); chenrui@mail.sitp.ac.cn (R.C.); sqian@mail.ustc.edu.cn (S.Q.) 
245 1 |a Diffractive Neural Network Enabled Spectral Object Detection 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>We proposed an innovative DNN-SOD diffractive neural network architecture that leverages spectral characteristics and field-of-view segmentation to enable direct spectral feature reconstruction and target detection for infrared targets. <list-item> The architecture achieved 84.27% on an infrared target dataset, demonstrating its feasibility for large-scale remote sensing tasks. </list-item> What is the implication of the main finding? <list list-type="bullet"> <list-item> </list-item>This study presents a new paradigm of applying optical computing to spectral remote sensing target detection, overcoming the limitations of traditional optical computing methods that fail to fully exploit spectral properties of targets and handle large-scale data effectively. <list-item> It provides a novel pathway for integrated sensing-computing information processing in future sky-based remote sensing, highlighting the potential of optical computing inference in real-world applications. </list-item> This article introduces a diffractive neural network-enabled spectral object detection approach (DNN-SOD) to efficiently process massive sky-based multidimensional light field data. DNN-SOD combines the novel exploitation of target spectral features with the intrinsic parallelism of optical computing to process multidimensional information efficiently. DNN-SOD detects targets by segmenting the spectral data cube and processing it with the DNN. The DNN maps spectral intensity to the designated area of the detector, then reconstructs spectral curves, and differentiates targets by comparing them with reference spectral signatures. Classification results from individual sub-spectral data cubes are compiled in sequence, enabling accurate target detection. Simulation results indicate that the architecture achieved an accuracy of 91.56% on the MNIST multi-spectral dataset and 84.27% on the infrared target multi-spectral dataset, validating its feasibility for target detection. This architecture represents an innovative outcome at the intersection of remote sensing and optical computing, significantly advancing the dissemination and practical adoption of optical computing in the field. 
653 |a Computation 
653 |a Data processing 
653 |a Remote sensing 
653 |a Spectral signatures 
653 |a Unmanned aerial vehicles 
653 |a CMOS 
653 |a Cubes 
653 |a Field of view 
653 |a Optical properties 
653 |a Propagation 
653 |a Datasets 
653 |a Neural networks 
653 |a Sensors 
653 |a Target detection 
653 |a Etching 
653 |a Information processing 
653 |a Optical data processing 
653 |a Feasibility 
653 |a Object recognition 
653 |a Light 
700 1 |a Chen, Rui  |u Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; mayijun@mail.sitp.ac.cn (Y.M.); chenrui@mail.sitp.ac.cn (R.C.); sqian@mail.ustc.edu.cn (S.Q.) 
700 1 |a Qian Shuaicun  |u Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; mayijun@mail.sitp.ac.cn (Y.M.); chenrui@mail.sitp.ac.cn (R.C.); sqian@mail.ustc.edu.cn (S.Q.) 
700 1 |a Sun, Shengli  |u Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; mayijun@mail.sitp.ac.cn (Y.M.); chenrui@mail.sitp.ac.cn (R.C.); sqian@mail.ustc.edu.cn (S.Q.) 
773 0 |t Remote Sensing  |g vol. 17, no. 19 (2025), p. 3381-3400 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261089301/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3261089301/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261089301/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch