A neuro-fuzzy model for evaluating and predicting computational thinking skills of students

Guardado en:
Bibliografiske detaljer
Udgivet i:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 36003-36016
Hovedforfatter: Filiz, Ahsen
Udgivet:
Nature Publishing Group
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3261606109
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-20089-4  |2 doi 
035 |a 3261606109 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Filiz, Ahsen  |u Department of Mathematics and Science Education, Education Faculty, Biruni University, Istanbul, Turkey (ROR: https://ror.org/01nkhmn89) (GRID: grid.488405.5) (ISNI: 0000 0004 4673 0690) 
245 1 |a A neuro-fuzzy model for evaluating and predicting computational thinking skills of students 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Computational thinking skill is an important skill individuals should acquire to meet the requirements of the digital age. The aim of the study is to predict the computational thinking skills of middle school students through ANFIS approach, which is an adaptive neural network-based fuzzy logic. Students’ computational thinking skill scores were predicted by creating a model based on grade level and academic achievement variables. Grade level and academic achievement served as the model’s input variables, and computational thinking skill scores served as the model’s output variable. Data were collected using personal information form and computational thinking scale. A comparison was made between students’ real and artificial computational thinking skill scores using statistical methods. In the study, a strong and favorable association between the artificial scores produced using the ANFIS technique and the actual scores was discovered. Furthermore, there was no statistically significant difference between the real and artificial scores for computational thinking skills. These results indicate that the ANFIS approach is a suitable alternative analysis method for predicting students’ computational thinking skills. The study provides a good example in the field of education where artificial intelligence can be used to predict students’ educational characteristics. 
653 |a Problem solving 
653 |a Students 
653 |a Artificial intelligence 
653 |a Curricula 
653 |a Communication 
653 |a Interdisciplinary aspects 
653 |a International organizations 
653 |a Mathematics 
653 |a 21st century 
653 |a Learning activities 
653 |a Statistical analysis 
653 |a Statistical methods 
653 |a Fuzzy logic 
653 |a Skills 
653 |a Cooperative learning 
653 |a Academic achievement 
653 |a Neural networks 
653 |a Digital Age 
653 |a Algorithms 
653 |a Critical thinking 
653 |a Education 
653 |a Digital literacy 
653 |a Social 
653 |a Economic 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 36003-36016 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261606109/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3261606109/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261606109/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch