MARC

LEADER 00000nab a2200000uu 4500
001 3261923731
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11385-6  |2 doi 
035 |a 3261923731 
045 2 |b d20251201  |b d20251231 
084 |a 68693  |2 nlm 
100 1 |a Talukder, Md. Alamin  |u International University of Business Agriculture and Technology, Department of Computer Science and Engineering, Dhaka, Bangladesh (GRID:grid.443015.7) (ISNI:0000 0001 2222 8047) 
245 1 |a XAI-HD: an explainable artificial intelligence framework for heart disease detection 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Cardiovascular disease (CVD) is the leading global cause of death, highlighting the urgent need for early, accurate, and interpretable diagnostic tools. However, many AI-based heart disease prediction models lack transparency, hindering their acceptance in clinical settings. This study proposes XAI-HD, a hybrid framework integrating machine learning (ML), deep learning (DL), and explainable AI (XAI) techniques for heart disease detection. The framework systematically addresses key challenges, including class imbalance, missing data, and feature inconsistency, through advanced preprocessing and class-balancing methods such as OSS, NCR, SMOTEN, ADASYN, SMOTETomek, and SMOTEENN. Comparative performance evaluations across multiple datasets (CHD, FHD, SHD) demonstrate that XAI-HD reduces classification error rates by 20–25% compared to traditional ML-based models, achieving superior accuracy, precision, recall, and F1-score. Additionally, SHAP and LIME-based feature importance analysis enhances model interpretability, fostering trust among medical professionals. The proposed framework holds significant real-world applicability, including seamless integration into hospital decision support systems, electronic health records (EHR), and real-time cardiac risk assessment platforms. Unlike conventional AI-driven cardiovascular risk prediction models, XAI-HD offers a more balanced, interpretable, and computationally efficient solution, ensuring both predictive accuracy and practical feasibility in clinical environments. Statistical validation using Wilcoxon signed-rank tests confirms the performance gains, and complexity analysis shows the framework is scalable for large-scale deployment. 
653 |a Prediction models 
653 |a Transparency 
653 |a Datasets 
653 |a Performance evaluation 
653 |a Deep learning 
653 |a Classification 
653 |a Medical records 
653 |a Mortality 
653 |a Optimization techniques 
653 |a Machine learning 
653 |a Disease 
653 |a Feature selection 
653 |a Risk assessment 
653 |a Business metrics 
653 |a Missing data 
653 |a Artificial intelligence 
653 |a Support networks 
653 |a Decision support systems 
653 |a Feasibility 
653 |a Medical prognosis 
653 |a Blood pressure 
653 |a Inconsistency 
653 |a Medical personnel 
653 |a Decision making 
653 |a Frame analysis 
653 |a Algorithms 
653 |a Real time 
653 |a Accuracy 
653 |a Rank tests 
653 |a Risk factors 
653 |a Deployment 
653 |a Explainable artificial intelligence 
653 |a Cardiovascular diseases 
653 |a Heart diseases 
653 |a Electronic health records 
653 |a Medical decision making 
653 |a Imbalance 
653 |a Cardiovascular disease 
653 |a Computerized medical records 
653 |a Heart 
653 |a Health records 
700 1 |a Talaat, Amira Samy  |u Electronics Research Institute, Computers and Systems Department, Cairo, Egypt (GRID:grid.463242.5) (ISNI:0000 0004 0387 2680) 
700 1 |a Kazi, Mohsin  |u King Saud University, Department of Pharmaceutics, College of Pharmacy, Riyadh 11451, Saudi Arabia (GRID:grid.56302.32) (ISNI:0000 0004 1773 5396) 
700 1 |a Khraisat, Ansam  |u Deakin University, School of Information Technology, Burwood 3125, Australia (GRID:grid.1021.2) (ISNI:0000 0001 0526 7079) 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 12 (Dec 2025), p. 385 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261923731/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3261923731/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261923731/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch