Prediction model for extrathyroidal extension in thyroid papillary carcinoma based on ultrasound radiomics

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 36200-36208
Egile nagusia: Yuan, Sha-Sha
Beste egile batzuk: Zhang, Xin-Ran, Yu, Xiao-Qin, Hu, Jiao-Jiao, Chen, Qing-Qing, Lu, Feng, Xiao, Yang-Jie, Huang, Ying-Fei, Fu, Xiao-Hong, Shen, Yan
Argitaratua:
Nature Publishing Group
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3261988542
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-19908-5  |2 doi 
035 |a 3261988542 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Yuan, Sha-Sha  |u School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China (ROR: https://ror.org/00ay9v204) (GRID: grid.267139.8) (ISNI: 0000 0000 9188 055X) 
245 1 |a Prediction model for extrathyroidal extension in thyroid papillary carcinoma based on ultrasound radiomics 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a This study aimed to construct preoperative prediction models for extrathyroidal extension (ETE) in papillary thyroid carcinoma (PTC) based on ultrasonic radiomics and explore their clinical application value. This retrospective study included PTC patients treated across three centers from 2015 to 2023. Data for 609 cases from two centers were utilized for model construction and divided 4:1 into a training set (n = 487; 144 with ETE and 343 without ETE) and test set (n = 122; 58 with ETE and 64 without ETE). The external validation set comprised 109 PTC patients from the third center (n = 109; 55 with ETE and 54 without ETE). Image features were extracted using Pyradiomics. Feature selection and dimensionality reduction were performed using the least absolute shrinkage and selection operator and principal component analysis to construct radiomics models. Model performance was evaluated by receiver operating characteristic (ROC) curve analysis, and clinical benefit was assessed by decision curve analysis. A total of 806 radiomics features were extracted from the training set data. After feature selection and dimensionality reduction, six significant features were included in the models, including one gray-level size zone matrix feature, one shape feature, one first-order feature, one gray-level run-length matrix feature, and two gray-level co-occurrence matrix features. The extreme gradient boosting (XGB) model showed the best performance in both the test and external validation sets, with area under the ROC curve values of 0.841 and 0.814, respectively. In conclusion, the XGB preoperative ETE prediction model for PTC based on ultrasonic radiomics offers good clinical application value for decision-making regarding therapeutic strategies. 
653 |a Radiomics 
653 |a Patients 
653 |a Software 
653 |a Thyroid cancer 
653 |a Medical prognosis 
653 |a Metastasis 
653 |a Surgery 
653 |a Principal components analysis 
653 |a Cancer therapies 
653 |a Decision making 
653 |a Hospitals 
653 |a Feature selection 
653 |a Thyroid 
653 |a Papillary thyroid carcinoma 
653 |a Ultrasonic imaging 
653 |a Prediction models 
653 |a Variance analysis 
653 |a Therapeutic applications 
653 |a Social 
700 1 |a Zhang, Xin-Ran  |u School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China (ROR: https://ror.org/00ay9v204) (GRID: grid.267139.8) (ISNI: 0000 0000 9188 055X) 
700 1 |a Yu, Xiao-Qin  |u Ultrasound Department of Gongli Hospital of Shanghai Pudong New Area, 200135, New Area, Shanghai, China 
700 1 |a Hu, Jiao-Jiao  |u Ultrasound Department of Gongli Hospital of Shanghai Pudong New Area, 200135, New Area, Shanghai, China 
700 1 |a Chen, Qing-Qing  |u Ultrasound Department of Gongli Hospital of Shanghai Pudong New Area, 200135, New Area, Shanghai, China 
700 1 |a Lu, Feng  |u Center of Ultrasonography, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China (ROR: https://ror.org/00z27jk27) (GRID: grid.412540.6) (ISNI: 0000 0001 2372 7462) 
700 1 |a Xiao, Yang-Jie  |u Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning Province, China (ROR: https://ror.org/04wjghj95) (GRID: grid.412636.4) 
700 1 |a Huang, Ying-Fei  |u School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China (ROR: https://ror.org/00ay9v204) (GRID: grid.267139.8) (ISNI: 0000 0000 9188 055X) 
700 1 |a Fu, Xiao-Hong  |u Ultrasound Department of Gongli Hospital of Shanghai Pudong New Area, 200135, New Area, Shanghai, China 
700 1 |a Shen, Yan  |u Ultrasound Department of Gongli Hospital of Shanghai Pudong New Area, 200135, New Area, Shanghai, China 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 36200-36208 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3261988542/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3261988542/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3261988542/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch