Development of signal processing and machine learning methods for spectrum sensing using autocorrelation features

Guardado en:
Detalles Bibliográficos
Publicado en:SN Applied Sciences vol. 7, no. 11 (Nov 2025), p. 1237
Autor principal: Sesham, Srinu
Otros Autores: Suresh, Nalina, Chembe, Dickson Kanungwe
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3262622006
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-07787-4  |2 doi 
035 |a 3262622006 
045 2 |b d20251101  |b d20251130 
100 1 |a Sesham, Srinu  |u University of Namibia, Department of Electrical and Computer Engineering, Ongwediva, Namibia (GRID:grid.10598.35) (ISNI:0000 0001 1014 6159) 
245 1 |a Development of signal processing and machine learning methods for spectrum sensing using autocorrelation features 
260 |b Springer Nature B.V.  |c Nov 2025 
513 |a Journal Article 
520 3 |a The rapid expansion of 5G networks and Internet-connected wireless devices (such as IoT) has led to intensified spectrum congestion in the Fifth Generation New Radio Frequency Range 1 (5G NR FR1). Efficient spectrum utilization through effective spectrum-sharing solutions is crucial for seamless 5G and Next-Generation (Next-Gen) wireless networks. The statistical/signal processing based sensing methods that allow new wireless devices for spectrum sharing are facing challenges such as uncertain thresholds and degraded performance under high noise levels relative to the signal. Alternatively, machine and deep learning-based spectrum sensing models demonstrate better performance which is independent of detection threshold, but requires large datasets for model training. This paper investigates the applications of frequency-domain auto-correlation coefficients to develop novel sensing methods, namely Auto-Correlation Integral-based Sensing (ACIS) and Logistic Regression Model-based Sensing (LRMS). The work also compares their detection performance and computational complexity against other prominent techniques in the literature. Results and analysis show that ACIS achieves the recommended detector performance <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="42452_2025_7787_Article_IEq1.gif" /> 90% and <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="42452_2025_7787_Article_IEq2.gif" /> 10%) at a very low signal-to-noise ratio (SNR) value of − 18 dB, using a correlation vector size (N) of 512 with a model complexity of O(NlogN). Whereas LRMS shows superior performance and can detect − 30 dB signals using a correlation vector size of 512 and a model complexity of O(N). The proposed methods outperform most existing signal processing and machine learning-based detectors in the literature.Article highlights<list list-type="bullet"><list-item></list-item>New methods (ACIS & LRMS) help detect weak wireless signals even in very noisy environments.<list-item>LRMS reliably detects signals as low as − 30 dB, using simpler computations than many existing tools.</list-item><list-item>These advances support better sharing of crowded 5G frequencies, helping future&#xa0;wireless networks.</list-item> 
653 |a Wireless networks 
653 |a Accuracy 
653 |a Deep learning 
653 |a Internet of Things 
653 |a Hypothesis testing 
653 |a Regression analysis 
653 |a Communication 
653 |a 5G mobile communication 
653 |a Regression models 
653 |a Signal processing 
653 |a Frequency ranges 
653 |a Noise levels 
653 |a Machine learning 
653 |a Energy 
653 |a Spectrum allocation 
653 |a Autocorrelation 
653 |a Statistical analysis 
653 |a Correlation coefficients 
653 |a Correlation coefficient 
653 |a Learning algorithms 
653 |a Fourier transforms 
653 |a Sensors 
653 |a Support vector machines 
653 |a Methods 
653 |a Eigenvalues 
653 |a Performance degradation 
653 |a Complexity 
653 |a Signal to noise ratio 
653 |a Environmental 
700 1 |a Suresh, Nalina  |u University of Namibia, Department of Computer and Mathematical Sciences, Windhoek, Namibia (GRID:grid.10598.35) (ISNI:0000 0001 1014 6159) 
700 1 |a Chembe, Dickson Kanungwe  |u University of Namibia, Department of Electrical and Computer Engineering, Ongwediva, Namibia (GRID:grid.10598.35) (ISNI:0000 0001 1014 6159) 
773 0 |t SN Applied Sciences  |g vol. 7, no. 11 (Nov 2025), p. 1237 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3262622006/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3262622006/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3262622006/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch