Evaluating FPGA Acceleration with Intel ® oneAPI Toolkit for High-Speed Data Processing

Guardado en:
Detalles Bibliográficos
Publicado en:EPJ Web of Conferences vol. 337 (2025)
Autor principal: Perro, Alberto
Otros Autores: Durante, Paolo, Pisani, Flavio, Xochelli, Eleni
Publicado:
EDP Sciences
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3263155342
003 UK-CbPIL
022 |a 2101-6275 
022 |a 2100-014X 
024 7 |a 10.1051/epjconf/202533701070  |2 doi 
035 |a 3263155342 
045 2 |b d20250101  |b d20251231 
084 |a 182355  |2 nlm 
100 1 |a Perro, Alberto 
245 1 |a Evaluating FPGA Acceleration with Intel ® oneAPI Toolkit for High-Speed Data Processing 
260 |b EDP Sciences  |c 2025 
513 |a Conference Proceedings 
520 3 |a The LHCb Experiment employs GPU cards in its first level trigger system to enhance computing efficiency, achieving a data rate of 32 Tb/s from the detector. GPUs were selected for their computational power, parallel processing capabilities, and adaptability.However, trigger tasks necessitate extensive combinatorial and bitwise operations, ideally suited for FPGA implementation. Yet, FPGA adoption for compute acceleration is hindered by steep learning curves and very different programming paradigms with respect to GPUs and CPUs. In the last few years, interest in high level synthesis has grown because of the possibility of developing FPGA gateware in higher-level languages.This study assesses the Intel® oneAPI FPGA Toolkit, which aims to simplify the development of FPGA-accelerated workloads by offering a GPU-like programming framework. We detail the integration of a portion of the current pixel clustering algorithm into oneAPI, address common implementation challenges, and compare it against CPU, GPU, and RTL implementations.Our findings showcase promising outcomes for this emerging technology, potentially facilitating the repurposing of FPGAs in the data acquisition system as compute accelerators during idle data-taking periods. 
653 |a Parallel processing 
653 |a High level synthesis 
653 |a Learning curves 
653 |a Central processing units--CPUs 
653 |a Data processing 
653 |a Acceleration 
653 |a Toolkits 
653 |a Data acquisition 
653 |a Field programmable gate arrays 
653 |a Large Hadron Collider 
653 |a Graphics processing units 
653 |a Combinatorial analysis 
653 |a Clustering 
700 1 |a Durante, Paolo 
700 1 |a Pisani, Flavio 
700 1 |a Xochelli, Eleni 
773 0 |t EPJ Web of Conferences  |g vol. 337 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3263155342/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3263155342/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch