SPOT-Route: A Semantic and Vision-Driven Framework for Smart Public Transport Scheduling using SHACL and SPARQL approaches

Uloženo v:
Podrobná bibliografie
Vydáno v:ITM Web of Conferences vol. 79 (2025)
Hlavní autor: Kavyashree, L
Další autoři: Sachinkumar, Sachinkumar, Ramachandra, A C, Petli, Vishwanath, Kishore, K L
Vydáno:
EDP Sciences
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3263157328
003 UK-CbPIL
022 |a 2431-7578 
022 |a 2271-2097 
024 7 |a 10.1051/itmconf/20257901038  |2 doi 
035 |a 3263157328 
045 2 |b d20250101  |b d20251231 
084 |a 268430  |2 nlm 
100 1 |a Kavyashree, L 
245 1 |a SPOT-Route: A Semantic and Vision-Driven Framework for Smart Public Transport Scheduling using SHACL and SPARQL approaches 
260 |b EDP Sciences  |c 2025 
513 |a Conference Proceedings 
520 3 |a Public transport facilitates large number people navigate from one place to another; if used efficiently will ease the traffic in crowded cities however because of the fixed schedules, delayed arrival and crowded buses triggers the citizen to travel in private vehicles. This problem can be resolved by efficient and smart public transport scheduling. Existing systems lack real-time data, semantic context, and timing awareness therefore an active scheduling strategy based on sensor data, Artificial intelligence (AI)-based passenger prediction, and time reasoning is required to boost the quality of the services, lower costs, and adapt to evolving city environments. Therefore, this research proposes SPOT-Route (Semantic and Passenger-aware Ontology-driven Temporal Routing), a smart scheduling framework that integrates AI-based passenger detection, semantic reasoning, and behavioral modeling using SHACL and SPARQL. The Public Urban Transport Scheduling System (PUTSS) algorithm is enhanced with two components: the Statistical Data Component (SDC) and the Real-Time Computer Vision Component (RTCVC), which uses YOLOv8 to detect passenger density and anomalies onboard. Sensor data is semantically annotated using SOSAc ontologies and processed through an Answer Set Programming (ASP)-based reasoner. Temporal behavior is modeled using SHACL shapes and SPARQL rules, enabling dynamic decision-making. The system decides whether to skip, maintain, or add bus runs based on congestion and occupancy metrics and the performance of SPOT-Route framework is validated using simulated and real-world data, which resulted in shows a global accuracy rate of 93.2%. 
653 |a Scheduling 
653 |a Semantics 
653 |a Public transportation 
653 |a Artificial intelligence 
653 |a Ontology 
653 |a Mathematical programming 
653 |a Reasoning 
653 |a Passengers 
653 |a Cities 
653 |a Declarative programming 
653 |a Computer vision 
653 |a Real time 
653 |a Urban transportation 
700 1 |a Sachinkumar, Sachinkumar 
700 1 |a Ramachandra, A C 
700 1 |a Petli, Vishwanath 
700 1 |a Kishore, K L 
773 0 |t ITM Web of Conferences  |g vol. 79 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3263157328/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3263157328/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch