A segmentation network for enhancing autonomous driving scene understanding using skip connection and adaptive weighting

Guardat en:
Dades bibliogràfiques
Publicat a:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 36692-36708
Autor principal: Li, Jiayao
Altres autors: Cheang, Chak Fong, Yu, Xiaoyuan, Tang, Suigu, Du, Zhaolong, Cheng, Qianxiang
Publicat:
Nature Publishing Group
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3263611436
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-20592-8  |2 doi 
035 |a 3263611436 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Li, Jiayao  |u School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao Special Administrative Region, China (ROR: https://ror.org/03jqs2n27) (GRID: grid.259384.1) (ISNI: 0000 0000 8945 4455) 
245 1 |a A segmentation network for enhancing autonomous driving scene understanding using skip connection and adaptive weighting 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a With the rapid development of autonomous driving technology, accurate and efficient scene understanding has become particularly important. Semantic segmentation technology for autonomous driving aims to accurately identify and segment elements such as roads, sidewalks, and vegetation to provide the necessary perceptual information. However, current semantic segmentation algorithms still face some challenges, mainly inaccurate segmentation of road edge contours, misclassification of a part of the whole object into other categories, and difficulty in segmenting objects with fewer pixels. Therefore, this paper proposes a Segmentation Network based on Swin-UNet and Skip Connection (SUSC-SNet). It includes skip connection module (SCM), multi-branch fusion module (MFM), and dual branch fusion module (DBFM). SCM uses a dense skip connection method to achieve aggregated semantic extension and highly flexible encoder features in the decoder. MFM and DBFM control the degree of fusion of each branch through weights, increasing flexibility and adaptability. We conducted a fair experimental comparison between SUSC-SNet and several advanced segmentation networks on two publicly available autonomous driving datasets. SUSC-SNet increased mean intersection over union by 0.67% and 0.9%, respectively, and it increased mean class accuracy by 0.95% and 0.67%, respectively. A series of experiments demonstrated the efficiency, robustness, and applicability of SUSC-SNet. 
653 |a Design 
653 |a Architecture 
653 |a Accuracy 
653 |a Datasets 
653 |a Semantics 
653 |a Roads & highways 
653 |a Economic 
700 1 |a Cheang, Chak Fong  |u School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao Special Administrative Region, China (ROR: https://ror.org/03jqs2n27) (GRID: grid.259384.1) (ISNI: 0000 0000 8945 4455); Zhuhai MUST Science and Technology Research Institute, Hengqin, China; Macau University of Science and Technology Innovation Technology Research Institute, Hengqin, China (ROR: https://ror.org/03jqs2n27) (GRID: grid.259384.1) (ISNI: 0000 0000 8945 4455) 
700 1 |a Yu, Xiaoyuan  |u School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao Special Administrative Region, China (ROR: https://ror.org/03jqs2n27) (GRID: grid.259384.1) (ISNI: 0000 0000 8945 4455) 
700 1 |a Tang, Suigu  |u International School of Microelectronics, Dongguan University of Technology, Dongguan, China (ROR: https://ror.org/01m8p7q42) (GRID: grid.459466.c) (ISNI: 0000 0004 1797 9243) 
700 1 |a Du, Zhaolong  |u School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao Special Administrative Region, China (ROR: https://ror.org/03jqs2n27) (GRID: grid.259384.1) (ISNI: 0000 0000 8945 4455) 
700 1 |a Cheng, Qianxiang  |u School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao Special Administrative Region, China (ROR: https://ror.org/03jqs2n27) (GRID: grid.259384.1) (ISNI: 0000 0000 8945 4455) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 36692-36708 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3263611436/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3263611436/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3263611436/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch