Accelerating Atmosphere Modeling: Neural Network Enhancements for Faster NRLMSISE Calculations

Guardado en:
Bibliografiske detaljer
Udgivet i:Artificial Satellites vol. 60, no. 3 (2025), p. 121
Hovedforfatter: Kashyn, Volodymyr
Andre forfattere: Choliy, Vasyl
Udgivet:
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3264126768
003 UK-CbPIL
022 |a 1509-3859 
022 |a 2083-6104 
022 |a 0208-841X 
024 7 |a 10.2478/arsa-2025-0007  |2 doi 
035 |a 3264126768 
045 2 |b d20250701  |b d20250930 
084 |a 188545  |2 nlm 
100 1 |a Kashyn, Volodymyr  |u Main Astronomical Observatory, Kyiv, Ukraine 
245 1 |a Accelerating Atmosphere Modeling: Neural Network Enhancements for Faster NRLMSISE Calculations 
260 |b De Gruyter Brill Sp. z o.o., Paradigm Publishing Services  |c 2025 
513 |a Journal Article 
520 3 |a NRLMSISE is an empirical model that allows us to predict temperatures and densities of the main atmospheric components. The model is widely used to evaluate atmospheric impacts on satellite orbits and laser beam refraction which come through the atmosphere, such as those used for Earth-satellite distance measurements. Model of the atmosphere is a valuable part of the Satellite Laser Ranging processing software like Kyiv Geodynamics (Juliette). Juliette is written in C++ and exploits the C++ clone of NRLMSISE written by the second author. The C++ version produces the same outputs as an official Fortran code.Accurate modeling of atmospheric influences on satellite motion requires performing numerous calculations along satellite orbits or laser beam paths, which are computationally intensive. By decreasing calculation time of NRLMSISE, we would not only save the modeling time but also give a prospect for a wider application of the model due to lowering computational resource demands.Our work demonstrates how the traditional NRLMSISE model can be effectively translated into a neural network. This conversion achieves significant performance gains on both CPU and GPU while maintaining acceptable accuracy when compared to the C++ implementation of NRLMSISE.We demonstrate the process of moving NRLMSISE to a neural network, the resulting accuracy, ease of running the trained model on CUDA-enabled GPUs, and the obtained boost of performance on both CPU and GPU. 
653 |a Accuracy 
653 |a Distance measurement 
653 |a Satellite orbits 
653 |a Neural networks 
653 |a C plus plus 
653 |a Graphics processing units 
653 |a Atmosphere 
653 |a Lasers 
653 |a Modelling 
653 |a C++ (programming language) 
653 |a Satellite laser ranging 
653 |a Satellites 
653 |a Geodynamics 
653 |a Laser beams 
653 |a Environmental 
700 1 |a Choliy, Vasyl  |u Main Astronomical Observatory, Kyiv, Ukraine 
773 0 |t Artificial Satellites  |g vol. 60, no. 3 (2025), p. 121 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3264126768/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3264126768/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch