An enhanced blood-sucking leech optimization for training feedforward neural networks

Shranjeno v:
Bibliografske podrobnosti
izdano v:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 36989-37025
Glavni avtor: Jin, Anqi
Drugi avtorji: Zhang, Jinzhong
Izdano:
Nature Publishing Group
Teme:
Online dostop:Citation/Abstract
Full Text
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3264150060
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-22884-5  |2 doi 
035 |a 3264150060 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Jin, Anqi  |u School of Electronics and Information Engineering, West Anhui University, 237012, Lu’an, China (ROR: https://ror.org/046ft6c74) (GRID: grid.460134.4) (ISNI: 0000 0004 1757 393X) 
245 1 |a An enhanced blood-sucking leech optimization for training feedforward neural networks 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a The input, hidden and output layers cultivate a hierarchical framework of the feedforward neural networks (FNNs) characterized by unidirectional information flow and feedback feedback-free loop connection, the network highlights attributes of fortified scalability and adaptability, elevated parallel computation and training efficiency, uncluttered structure and easy implementation. The blood-sucking leech optimization (BSLO) is predicated on the foraging patterns of blood-sucking leeches in rice paddies, which incorporates exploration, exploitation, switching mechanism of directional leeches, recherche mechanism of directionless leeches, and re-tracking mechanism to accomplish global coarse discovery and local elaborated extraction, and ascertain the fantastic solution. To expedite solution efficiency and reinforce mining precision, this paper proposes an enhanced BSLO with the simplex method (SBSLO) to train the FNNs, the objective is to quantify the discrepancy between anticipated output and realistic output, assess training efficacy and classification accuracy of prediction samples, and establish the fantastic connection weights and bias thresholds. Simplex method not only strengthens directional exploration precision and bolsters population diversity to mitigate premature convergence and facilitate escape from local optimum but also advances constraint processing capability and emphasizes noteworthy robustness and generalization to reinforce convergence procedure and elevate solution quality. The stability and dependability of the SBSLO are validated by seventeen sample datasets, and the SBSLO is compared with KOA, NRBO, HLOA, IAO, WO, PKO, EGO, HEOA, APO, FLO, PO and BSLO. The experimental results demonstrate that the SBSLO amalgamates the collective cooperative exploration of the BSLO with the refined directional exploitation of the simplex method to leverage complementary advantages, alleviate local search stagnation, boost training efficiency and prediction precision, strengthen stability and robustness, and foster convergence speed and solution quality. 
653 |a Blood 
653 |a Accuracy 
653 |a Exploitation 
653 |a Adaptability 
653 |a Neural networks 
653 |a Rice fields 
653 |a Approximation 
653 |a Design 
653 |a Feedback 
653 |a Foraging behavior 
653 |a Training 
653 |a Systems stability 
653 |a Convergence 
653 |a Optimization algorithms 
653 |a Energy consumption 
653 |a Efficiency 
653 |a Simplex method 
653 |a Environmental 
700 1 |a Zhang, Jinzhong  |u School of Electrical and Photoelectronic Engineering, West Anhui University, 237012, Lu’an, China (ROR: https://ror.org/046ft6c74) (GRID: grid.460134.4) (ISNI: 0000 0004 1757 393X) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 36989-37025 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3264150060/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3264150060/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3264150060/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch