Harnessing High Speed Flow: Dynamic Models for Air Jet Spinning and Bladeless Turbines

Shranjeno v:
Bibliografske podrobnosti
izdano v:ProQuest Dissertations and Theses (2025)
Glavni avtor: Leite de Moraes, Eduardo Malvezzi
Izdano:
ProQuest Dissertations & Theses
Teme:
Online dostop:Citation/Abstract
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3264215448
003 UK-CbPIL
020 |a 9798297621237 
035 |a 3264215448 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Leite de Moraes, Eduardo Malvezzi 
245 1 |a Harnessing High Speed Flow: Dynamic Models for Air Jet Spinning and Bladeless Turbines 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a High speed flow interactions with rotating bodies play an important role in many applications. This thesis explores two areas in this field, dynamic modeling of fibers in air jet spinning, and the performance predictions of bladeless turbines. In air jet spinning, individual fibers are twisted and wrapped to form yarn using high speed airflow. This work presents CFD studies of the flow field inside an air jet spinning chamber, coupled with dynamic models for wrap fiber motion. A geometric model based on a completed yarn, a one-dimensional equilibrium model, and a two-dimensional time dependent model were created to predict wrap velocities, combining flow field characteristics to yarn production rates. Experiments using high speed imaging were conducted to validate these models, closing the cycle from simulation to reality.The bladeless turbine is an emerging concept that uses unique characteristics of supersonic flow to generate torque. Computational simulations were performed to assess the performance of both cylindrical and conical bladeless turbines. The analysis of results includes visualization of shock wave formation, pressure distributions, and power extraction as a function of rotational velocity. Numerical analysis and analytical equations were used to guide the geometry of a turbine suitable for testing in a laboratory environment. Modifications and analysis techniques were proposed to enable real-world testing, including the conical design which simplifies experimental integration. By developing predictive models, this research advances the understanding of fluid-solid interactions in high speed flows, with direct applications to fiber processing and energy generation. 
653 |a Turbines 
653 |a Software 
653 |a Tensile strength 
653 |a Air flow 
653 |a Turbulence models 
653 |a Flow velocity 
653 |a Yarn 
653 |a Shock waves 
653 |a Computer aided design--CAD 
653 |a Manufacturers 
653 |a Pressure distribution 
653 |a Reynolds number 
653 |a Boundary conditions 
653 |a Geometry 
653 |a Ordinary differential equations 
653 |a High speed 
653 |a Field representatives 
653 |a Textiles 
653 |a Computer engineering 
653 |a Fluid mechanics 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3264215448/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3264215448/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch