A robust color image encryption algorithm based on 2D-SQSM hyperchaotic map and cyclic shift scrambling

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 10 (Oct 2025), p. e0333640
Autor principal: Liu, Feixian
Otros Autores: Wu, Shulei
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This paper proposes a structurally simplified 2D quadratic sine map (2D-SQSM). This map effectively addresses the insufficient chaos performance of traditional chaotic maps while avoiding the overly complex structures of emerging chaotic maps. Evaluated using multiple chaos performance metrics, the 2D-SQSM demonstrates high Lyapunov exponents, and sample entropy, with chaotic characteristics superior to some advanced chaotic maps proposed in recent years. Based on the 2D-SQSM, this paper further designs a highly robust color image encryption algorithm. First, by introducing different hash functions multiple times, the correlation between the key and plaintext is enhanced, significantly improving resistance against brute-force attacks; second, cyclic shifting and segmentation-recombination operations are applied separately to the three RGB channels to effectively disrupt pixel distribution and significantly reduce spatial correlation between pixels; finally, the chaotic sequence generated by the 2D-SQSM is utilized for XOR diffusion, further enhancing the randomness and diffusion capability of the ciphertext. A large number of simulation results demonstrate that this algorithm can significantly enhance the image information entropy, and can effectively reduce pixel correlation, possessing good statistical properties. Furthermore, it is robust against differential attacks, noise attacks, cropping attacks, chosen plaintext attacks, etc., and is suitable for secure image transmission.
ISSN:1932-6203
DOI:10.1371/journal.pone.0333640
Fuente:Health & Medical Collection