Pronunciation trainer for second language learning using generative AI

Na minha lista:
Detalhes bibliográficos
Publicado no:International Journal of Educational Technology in Higher Education vol. 22, no. 1 (Dec 2025), p. 64
Autor principal: Sungkur, Roopesh Kevin
Outros Autores: Shibdeen, Nidhi
Publicado em:
Springer Nature B.V.
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3264443829
003 UK-CbPIL
022 |a 2365-9440 
022 |a 1698-580X 
024 7 |a 10.1186/s41239-025-00561-x  |2 doi 
035 |a 3264443829 
045 2 |b d20251201  |b d20251231 
084 |a 142233  |2 nlm 
100 1 |a Sungkur, Roopesh Kevin  |u University of Mauritius, Department of Software and Information Systems, Faculty of Information, Communication and Digital Technologies, Reduit, Mauritius (GRID:grid.45199.30) (ISNI:0000 0001 2288 9451) 
245 1 |a Pronunciation trainer for second language learning using generative AI 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Generative AI models have demonstrated great promise in a variety of fields, including language learning and translation tasks. This research aims to develop a web-based pronunciation training system using Generative AI techniques to provide real-time feedback and multilingual support. The system leverages advanced AI models including pre-trained Automatic Speech Recognition (ASR) and Text-To-Speech (TTS) models, to analyse and synthesize speech. Machine learning algorithms are additionally used for real-time evaluation. The key features of the system include diverse sample texts for pronunciation, immediate pronunciation feedback, audio of the sample text using the TTS model, audio playback of the user input, support for both English and German languages and finally, an interactive user-interface. To assess the system’s effectiveness, evaluation techniques such as Mean Opinion Score (MOS), response time evaluation and Task Completion Rate (TCR) are employed. The Mean Opinion Score obtained was 3.72 and the Task Completion Rate was 80% showing that this novel system can significantly enhance language learning by providing users with pronunciation training, making it a valuable tool for both educators and learners. Even though AI tools help learners reduce their speaking anxiety, they may have difficulties with interpreting feedback and detecting small pronunciation differences. By creating a comprehensive system that uses generative AI to improve pronunciation training, this novel research aims to overcome existing issues in second-language learning. 
653 |a Interpreting 
653 |a Computer science 
653 |a Text-to-speech 
653 |a Feedback 
653 |a Training 
653 |a Machine learning 
653 |a Phonology 
653 |a Teachers 
653 |a Anxiety 
653 |a Human-computer interaction 
653 |a Reaction time 
653 |a Pronunciation instruction 
653 |a Real time 
653 |a Language acquisition 
653 |a Speech synthesis 
653 |a Language varieties 
653 |a Generative artificial intelligence 
653 |a Speaking 
653 |a Artificial intelligence 
653 |a Second language learning 
653 |a Voice recognition 
653 |a Speech recognition 
653 |a German language 
653 |a Multilingualism 
653 |a Automatic speech recognition 
653 |a Languages 
653 |a Evaluation 
653 |a Task completion 
653 |a Speech 
653 |a Pronunciation 
653 |a Language 
653 |a Mental Computation 
653 |a Instructional Improvement 
653 |a Literature Reviews 
653 |a Habit Formation 
653 |a Interpersonal Relationship 
653 |a Pattern Recognition 
653 |a Natural Language Processing 
653 |a Fundamental Concepts 
653 |a Language Processing 
653 |a Educational Environment 
653 |a Learner Engagement 
653 |a Cognitive Psychology 
653 |a Educational Strategies 
653 |a Algorithms 
653 |a Educational Resources 
653 |a Influence of Technology 
653 |a Educational Methods 
653 |a Learning Processes 
653 |a Learning Experience 
653 |a Educational Technology 
653 |a Arithmetic 
700 1 |a Shibdeen, Nidhi  |u University of Mauritius, Department of Software and Information Systems, Faculty of Information, Communication and Digital Technologies, Reduit, Mauritius (GRID:grid.45199.30) (ISNI:0000 0001 2288 9451) 
773 0 |t International Journal of Educational Technology in Higher Education  |g vol. 22, no. 1 (Dec 2025), p. 64 
786 0 |d ProQuest  |t Political Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3264443829/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3264443829/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3264443829/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch