Precision agriculture for improving crop yield predictions: a literature review

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Frontiers in Agronomy vol. 7 (Jul 2025), p. 1566201-1566212
मुख्य लेखक: Saha, Sarmistha
अन्य लेखक: Kucher, Olga D, Utkina, Aleksandra O, Rebouh, Nazih Y
प्रकाशित:
Frontiers Media SA
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text + Graphics
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3265448403
003 UK-CbPIL
022 |a 2673-3218 
024 7 |a 10.3389/fagro.2025.1566201  |2 doi 
035 |a 3265448403 
045 2 |b d20250701  |b d20250731 
100 1 |a Saha, Sarmistha  |u Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, India 
245 1 |a Precision agriculture for improving crop yield predictions: a literature review 
260 |b Frontiers Media SA  |c Jul 2025 
513 |a Literature Review 
520 3 |a Precision agriculture (PA) is a data-driven, technology-enabled farming management strategy that monitors, quantifies, and examines the requirements of specific crops and fields. A key aim of precision agricultural technologies is to optimize crop yield and quality, while also working to lower operating costs and minimize environmental impact. This approach not only enhances productivity but also promotes sustainable farming practices. In PA, it is essential to leverage effective monitoring through sensing technologies, implement robust management information systems, and proactively address both inter- and intravariability within cropping systems. Crop yield simulations using deep learning and machine learning (ML) techniques aid in understanding the combined effects of pests, nutrient and water shortages, and other field variables during the growing season. On the other hand, remote sensing techniques such as lidar imagery, radar, and multi- and hyperspectral data presents valuable opportunities to enhance yield predictions by improving the understanding of soil, climate, and other biophysical factors affecting crops. This paper aims to highlight key gaps and opportunities for future research, focusing on the evolving landscape of remote sensing and machine learning techniques employed to enhance predictions of crop yield. In future, PA is likely to include more focused use of sensor platforms and ML techniques can enhance the effectiveness of agricultural practices. Additionally, the development of hybrid systems that combine diverse ML approaches and signal processing techniques will pave the way for more innovative and efficient solutions in the field. 
653 |a Farm management 
653 |a Agricultural production 
653 |a Crop yield 
653 |a Agricultural practices 
653 |a Agricultural technology 
653 |a Information systems 
653 |a Water shortages 
653 |a Remote sensing 
653 |a Lidar 
653 |a Machine learning 
653 |a Agriculture 
653 |a Radar imaging 
653 |a Deep learning 
653 |a Climate change 
653 |a Learning algorithms 
653 |a Environmental impact 
653 |a Sustainable practices 
653 |a Literature reviews 
653 |a Signal processing 
653 |a Growing season 
653 |a Artificial intelligence 
653 |a Operating costs 
653 |a Predictions 
653 |a Precision agriculture 
653 |a Pests 
653 |a Cropping systems 
653 |a Decision making 
653 |a Neural networks 
653 |a Effectiveness 
653 |a Hybrid systems 
653 |a Crop production systems 
653 |a Sustainable agriculture 
653 |a Management information systems 
653 |a Environmental 
700 1 |a Kucher, Olga D  |u Department of Environmental Management, Institute of Environmental Engineering, RUDN University, Russia 
700 1 |a Utkina, Aleksandra O  |u Department of Environmental Management, Institute of Environmental Engineering, RUDN University, Russia 
700 1 |a Rebouh, Nazih Y  |u Department of Environmental Management, Institute of Environmental Engineering, RUDN University, Russia 
773 0 |t Frontiers in Agronomy  |g vol. 7 (Jul 2025), p. 1566201-1566212 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265448403/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265448403/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265448403/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch