Demonstration of an AI-driven workflow for dynamic x-ray spectroscopy

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ Computational Materials vol. 11, no. 1 (2025), p. 320-334
1. Verfasser: Du, Ming
Weitere Verfasser: Wolfman, Mark, Sun, Chengjun, Kelly, Shelly D., Cherukara, Mathew J.
Veröffentlicht:
Nature Publishing Group
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3265686354
003 UK-CbPIL
022 |a 2057-3960 
024 7 |a 10.1038/s41524-025-01771-7  |2 doi 
035 |a 3265686354 
045 2 |b d20250101  |b d20251231 
084 |a 274866  |2 nlm 
100 1 |a Du, Ming  |u Advanced Photon Source, Argonne National Laboratory, 60439, Lemont, IL, USA (ROR: https://ror.org/05gvnxz63) (GRID: grid.187073.a) (ISNI: 0000 0001 1939 4845) 
245 1 |a Demonstration of an AI-driven workflow for dynamic x-ray spectroscopy 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a X-ray absorption near edge structure (XANES) spectroscopy is a powerful technique for characterizing the chemical state and symmetry of individual elements within materials, but requires collecting data at many energy points which can be time-consuming. While adaptive sampling methods exist for efficiently collecting spectroscopic data, they often lack domain-specific knowledge about the structure of XANES spectra. Here we demonstrate a knowledge-injected Bayesian optimization approach for adaptive XANES data collection that incorporates understanding of spectral features like absorption edges and pre-edge peaks. We show this method accurately reconstructs the absorption edge of XANES spectra using only 15–20% of the measurement points typically needed for conventional sampling, while maintaining the ability to determine the x-ray energy of the sharp peak after the absorption edge with errors less than 0.03 eV, the absorption edge with errors less than 0.1 eV; and overall root-mean-square errors less than 0.005 compared to traditionally sampled spectra. Our experiments on battery materials and catalysts demonstrate the method’s effectiveness for both static and dynamic XANES measurements, improving data collection efficiency and enabling better time resolution for tracking chemical changes. This approach advances the degree of automation in XANES experiments, reducing the common errors of under- or over-sampling points near the absorption edge and enabling dynamic experiments that require high temporal resolution or limited measurement time. 
653 |a Data collection 
653 |a Temporal resolution 
653 |a Bayesian analysis 
653 |a Oxidation 
653 |a Neutrons 
653 |a Spectrum analysis 
653 |a Fourier transforms 
653 |a X ray absorption 
653 |a Sampling methods 
653 |a Adaptive sampling 
653 |a Optimization 
653 |a Spectroscopy 
653 |a Spectra 
653 |a Energy 
653 |a Automation 
653 |a Error reduction 
653 |a Algorithms 
653 |a Sampling 
653 |a X-ray spectroscopy 
653 |a Expected values 
653 |a X-rays 
700 1 |a Wolfman, Mark  |u Advanced Photon Source, Argonne National Laboratory, 60439, Lemont, IL, USA (ROR: https://ror.org/05gvnxz63) (GRID: grid.187073.a) (ISNI: 0000 0001 1939 4845) 
700 1 |a Sun, Chengjun  |u Advanced Photon Source, Argonne National Laboratory, 60439, Lemont, IL, USA (ROR: https://ror.org/05gvnxz63) (GRID: grid.187073.a) (ISNI: 0000 0001 1939 4845) 
700 1 |a Kelly, Shelly D.  |u Advanced Photon Source, Argonne National Laboratory, 60439, Lemont, IL, USA (ROR: https://ror.org/05gvnxz63) (GRID: grid.187073.a) (ISNI: 0000 0001 1939 4845) 
700 1 |a Cherukara, Mathew J.  |u Advanced Photon Source, Argonne National Laboratory, 60439, Lemont, IL, USA (ROR: https://ror.org/05gvnxz63) (GRID: grid.187073.a) (ISNI: 0000 0001 1939 4845) 
773 0 |t NPJ Computational Materials  |g vol. 11, no. 1 (2025), p. 320-334 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265686354/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3265686354/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265686354/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch