An In-Depth Examination of Localization Strategies Employed in Wireless Sensor Networks (WSNs): Methods, Challenges and Prospective Developments

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International Journal of Networked and Distributed Computing vol. 13, no. 2 (Dec 2025), p. 26
1. Verfasser: Panda, Sucheta
Weitere Verfasser: Priyadarshini, Sushree Bibhuprada B.
Veröffentlicht:
Springer Nature B.V.
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3265732947
003 UK-CbPIL
022 |a 2211-7938 
022 |a 2211-7946 
024 7 |a 10.1007/s44227-025-00067-y  |2 doi 
035 |a 3265732947 
045 2 |b d20251201  |b d20251231 
100 1 |a Panda, Sucheta  |u Siksha O Anusandhan University Institute of Technical Education and Research, Department of Computer Science and Engineering, Bhubaneswar, India (GRID:grid.412612.2) (ISNI:0000 0004 1760 9349) 
245 1 |a An In-Depth Examination of Localization Strategies Employed in Wireless Sensor Networks (WSNs): Methods, Challenges and Prospective Developments 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Wireless Sensor Networks (WSNs) rely heavily on localization to provide location aware services for applications including military surveillance, smart agriculture, environmental monitoring and healthcare. Morden methods that combine range-based and range-free techniques including Time of Arrival (ToA), Received Signal Strength Indicator (RSSI) and hybrid approaches have greatly increased the localization accuracy. Furthermore, machine learning based models with improved adaptability in dynamic situations incorporate: Convolutional Neural Networks (CNNs) and Artificial Neural Networks (ANN). Despite such developments, several challenges and obstacles still exist. In case of complicated terrains, environmental obstacles conjointly with multipath fading and signal interference curtail the localization accuracy. Further, the advanced techniques like Ultra-Wide Band (UWB) and directional antennas in networks with limited resources get hampered by high energy consumption and escalated hardware costs. Additionally, the lack of standard models for real time localization makes the system design even more difficult since sensor node mobility and dynamic topologies compromise the accuracy of the conventional methods. In this context, localization strategy is also seriously threatened by security issues such as spoofing and data manipulation. The current paper provides a thorough analysis of various current localization strategies employed in WSNs, thereafter classified them as machine learning based, range based, range free and hybrid approaches. The objective is to highlight the serious issues associated with the existing systems and to provide possible design suggestions for developing precise, safe and energy efficient localization frameworks. The findings of the current work are meant to expedite the future investigations more towards scalable, reliable, and contextually aware localization technologies appropriate for novel applications in the Internet of Things (IoT) and smart environments while considering both cost and security constraints. 
653 |a Accuracy 
653 |a Deep learning 
653 |a Internet of Things 
653 |a Spoofing 
653 |a Military applications 
653 |a Environmental monitoring 
653 |a Artificial neural networks 
653 |a Wireless sensor networks 
653 |a Directional antennas 
653 |a Topology 
653 |a Systems design 
653 |a Signal strength 
653 |a Machine learning 
653 |a Localization 
653 |a Location based services 
653 |a Mathematical programming 
653 |a Global positioning systems--GPS 
653 |a Sensors 
653 |a Neural networks 
653 |a Algorithms 
653 |a Surveillance 
653 |a Energy consumption 
653 |a Barriers 
653 |a Cybersecurity 
700 1 |a Priyadarshini, Sushree Bibhuprada B.  |u Siksha O Anusandhan University Institute of Technical Education and Research, Department of Computer Science and Information Technology, Bhubaneswar, India (GRID:grid.412612.2) (ISNI:0000 0004 1760 9349) 
773 0 |t The International Journal of Networked and Distributed Computing  |g vol. 13, no. 2 (Dec 2025), p. 26 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265732947/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3265732947/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265732947/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch