Leveraging Large Language Models for Sustainable and Inclusive Web Accessibility

Guardado en:
Bibliografiske detaljer
Udgivet i:Big Data and Cognitive Computing vol. 9, no. 10 (2025), p. 247-271
Hovedforfatter: Andruccioli Manuel
Andre forfattere: Bassi, Barry, Delnevo Giovanni, Salomoni Paola
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3265829670
003 UK-CbPIL
022 |a 2504-2289 
024 7 |a 10.3390/bdcc9100247  |2 doi 
035 |a 3265829670 
045 2 |b d20250101  |b d20251231 
100 1 |a Andruccioli Manuel 
245 1 |a Leveraging Large Language Models for Sustainable and Inclusive Web Accessibility 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The increasing complexity of modern web applications, which are composed of dynamic and asynchronous components, poses a significant challenge for digital inclusion. Traditional automated tools typically analyze only the static HTML markup generated by frontend and backend frameworks. Recent advances in Large Language Models (LLMs) offer a novel approach to enhance the validation process by directly analyzing the source code. In this paper, we investigate the capacity of LLMs to interpret and reason dynamically generated content, providing real-time feedback on web accessibility. Our findings show that LLMs can correctly anticipate the presence of accessibility violations in the generated HTML code, going beyond the capabilities of traditional validators, also evaluating possible issues due to the asynchronous execution of the web application. However, together with legitimate issues, LLMs also produced a relevant number of hallucinated or redundant violations. This study contributes to the broader effort of employing AI with the aim of improving the inclusivity and equity of the web. 
653 |a Language 
653 |a Software 
653 |a Accessibility 
653 |a Violations 
653 |a Students 
653 |a Source code 
653 |a Large language models 
653 |a Applications programs 
653 |a Sustainable development 
653 |a Handicapped accessibility 
653 |a Compliance 
653 |a Automation 
653 |a Real time 
653 |a HyperText Markup Language 
653 |a Chatbots 
653 |a Semantics 
700 1 |a Bassi, Barry 
700 1 |a Delnevo Giovanni 
700 1 |a Salomoni Paola 
773 0 |t Big Data and Cognitive Computing  |g vol. 9, no. 10 (2025), p. 247-271 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265829670/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265829670/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265829670/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch