Trans-cVAE-GAN: Transformer-Based cVAE-GAN for High-Fidelity EEG Signal Generation

Guardado en:
Detalles Bibliográficos
Publicado en:Bioengineering vol. 12, no. 10 (2025), p. 1028-1068
Autor principal: Yao Yiduo
Otros Autores: Wang, Xiao, Hao Xudong, Sun, Hongyu, Dong Ruixin, Li, Yansheng
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling. Conventional generative models, including VAEs and GAN variants such as DCGAN, WGAN, and WGAN-GP, often yield blurred waveforms, unstable spectral distributions, or lack semantic controllability, limiting their effectiveness in emotion-related applications. To address these challenges, this research proposes a Transformer-based conditional variational autoencoder–generative adversarial network (Trans-cVAE-GAN) that combines Transformer-driven temporal modeling, label-conditioned latent inference, and adversarial learning. A multi-dimensional structural loss further constrains generation by preserving temporal correlation, frequency-domain consistency, and statistical distribution. Experiments on three SEED-family datasets—SEED, SEED-FRA, and SEED-GER—demonstrate high similarity to real EEG, with representative mean ± SD correlations of Pearson ≈ 0.84 ± 0.08/0.74 ± 0.12/0.84 ± 0.07 and Spearman ≈ 0.82 ± 0.07/0.72 ± 0.12/0.83 ± 0.08, together with low spectral divergence (KL ≈ 0.39 ± 0.15/0.41 ± 0.20/0.37 ± 0.18). Comparative analyses show consistent gains over classical GAN baselines, while ablations verify the indispensable roles of the Transformer encoder, label conditioning, and cVAE module. In downstream emotion recognition, augmentation with generated EEG raises accuracy from 86.9% to 91.8% on SEED (with analogous gains on SEED-FRA and SEED-GER), underscoring enhanced generalization and robustness. These results confirm that the proposed approach simultaneously ensures fidelity, stability, and controllability across cohorts, offering a scalable solution for affective computing and brain–computer interface applications.
ISSN:2306-5354
DOI:10.3390/bioengineering12101028
Fuente:Engineering Database