Generative Adversarial Networks in Dermatology: A Narrative Review of Current Applications, Challenges, and Future Perspectives

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineering vol. 12, no. 10 (2025), p. 1113-1144
1. Verfasser: Izu-Belloso Rosa Maria
Weitere Verfasser: Ibarrola-Altuna Rafael, Rodriguez-Alonso, Alex
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3265832627
003 UK-CbPIL
022 |a 2306-5354 
024 7 |a 10.3390/bioengineering12101113  |2 doi 
035 |a 3265832627 
045 2 |b d20250101  |b d20251231 
100 1 |a Izu-Belloso Rosa Maria  |u Medicine Faculty, Hospital Universitario Basurto, 48013 Bilbao, Spain 
245 1 |a Generative Adversarial Networks in Dermatology: A Narrative Review of Current Applications, Challenges, and Future Perspectives 
260 |b MDPI AG  |c 2025 
513 |a Literature Review 
520 3 |a Generative Adversarial Networks (GANs) have emerged as powerful tools in artificial intelligence (AI) with growing relevance in medical imaging. In dermatology, GANs are revolutionizing image analysis, enabling synthetic image generation, data augmentation, color standardization, and improved diagnostic model training. This narrative review explores the landscape of GAN applications in dermatology, systematically analyzing 27 key studies and identifying 11 main clinical use cases. These range from the synthesis of under-represented skin phenotypes to segmentation, denoising, and super-resolution imaging. The review also examines the commercial implementations of GAN-based solutions relevant to practicing dermatologists. We present a comparative summary of GAN architectures, including DCGAN, cGAN, StyleGAN, CycleGAN, and advanced hybrids. We analyze technical metrics used to evaluate performance—such as Fréchet Inception Distance (FID), SSIM, Inception Score, and Dice Coefficient—and discuss challenges like data imbalance, overfitting, and the lack of clinical validation. Additionally, we review ethical concerns and regulatory limitations. Our findings highlight the transformative potential of GANs in dermatology while emphasizing the need for standardized protocols and rigorous validation. While early results are promising, few models have yet reached real-world clinical integration. The democratization of AI tools and open-access datasets are pivotal to ensure equitable dermatologic care across diverse populations. This review serves as a comprehensive resource for dermatologists, researchers, and developers interested in applying GANs in dermatological practice and research. Future directions include multimodal integration, clinical trials, and explainable GANs to facilitate adoption in daily clinical workflows. 
610 4 |a National Library of Medicine 
651 4 |a United States--US 
653 |a Dermatology 
653 |a Clinical trials 
653 |a Artificial intelligence 
653 |a Deep learning 
653 |a Medical research 
653 |a Image resolution 
653 |a Trends 
653 |a Phenotypes 
653 |a Medical imaging 
653 |a Skin diseases 
653 |a Generative adversarial networks 
653 |a Image processing 
653 |a Hybrids 
653 |a Data augmentation 
653 |a Image analysis 
653 |a Medicine 
653 |a Standardization 
653 |a National libraries 
653 |a Image segmentation 
653 |a Neural networks 
653 |a Classification 
653 |a Literature reviews 
653 |a Sensory integration 
653 |a Synthetic data 
700 1 |a Ibarrola-Altuna Rafael  |u Hospital Universitario Galdakao, 48960 Bizkaia, Spain; rafael.ibarrolaaltuna@osakidetza.eus 
700 1 |a Rodriguez-Alonso, Alex  |u Facultad de Medicina, Universidad del Pais Vasco/EHU, 48940 Leioa, Spain; alecai.rodriguez@gmail.com 
773 0 |t Bioengineering  |g vol. 12, no. 10 (2025), p. 1113-1144 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265832627/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265832627/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265832627/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch