Bayesian-Optimized Ensemble Models for Geopolymer Concrete Compressive Strength Prediction with Interpretability Analysis

Gardado en:
Detalles Bibliográficos
Publicado en:Buildings vol. 15, no. 20 (2025), p. 3667-3691
Autor Principal: Timur, Cihan Mehmet
Outros autores: Cihan Pınar
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3265841281
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15203667  |2 doi 
035 |a 3265841281 
045 2 |b d20251015  |b d20251031 
084 |a 231437  |2 nlm 
100 1 |a Timur, Cihan Mehmet  |u Department of Civil Engineering, Çorlu Engineering Faculty, Tekirdağ Namık Kemal University, 59860 Tekirdağ, Turkey; mehmetcihan@nku.edu.tr 
245 1 |a Bayesian-Optimized Ensemble Models for Geopolymer Concrete Compressive Strength Prediction with Interpretability Analysis 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate prediction of geopolymer concrete compressive strength is vital for sustainable construction. Traditional experiments are time-consuming and costly; therefore, computer-aided systems enable rapid and accurate estimation. This study evaluates three ensemble learning algorithms (Extreme Gradient Boosting (XGB), Random Forest (RF), and Light Gradient Boosting Machine (LightGBM)), as well as two baseline models (Support Vector Regression (SVR) and Artificial Neural Network (ANN)), for this task. To improve performance, hyperparameter tuning was conducted using Bayesian Optimization (BO). Model accuracy was measured using R2, RMSE, MAE, and MAPE. The results demonstrate that the XGB model outperforms others under both default and optimized settings. In particular, the XGB-BO model achieved high accuracy, with RMSE of 0.3100 ± 0.0616 and R2 of 0.9997 ± 0.0001. Furthermore, Shapley Additive Explanations (SHAP) analysis was used to interpret the decision-making of the XGB model. SHAP results revealed the most influential features for compressive strength of geopolymer concrete were, in order, coarse aggregate, curing time, and NaOH molar concentration. The graphical user interface (GUI) developed for compressive strength prediction demonstrates the practical potential of this research. It contributes to integrating the approach into construction practices. This study highlights the effectiveness of explainable machine learning in understanding complex material behaviors and emphasizes the importance of model optimization for making sustainable and accurate engineering predictions. 
653 |a Mechanical properties 
653 |a Accuracy 
653 |a Concrete 
653 |a Regression analysis 
653 |a Artificial neural networks 
653 |a Optimization 
653 |a Graphical user interface 
653 |a Machine learning 
653 |a Performance evaluation 
653 |a Sodium hydroxide 
653 |a Decision trees 
653 |a User interface 
653 |a Bayesian analysis 
653 |a Artificial intelligence 
653 |a Support vector machines 
653 |a Predictions 
653 |a Geopolymers 
653 |a Neural networks 
653 |a Decision making 
653 |a Variables 
653 |a Algorithms 
653 |a Cement 
653 |a Ensemble learning 
653 |a Concrete properties 
653 |a Mathematical models 
653 |a Compressive strength 
700 1 |a Cihan Pınar  |u Department of Computer Engineering, Çorlu Engineering Faculty, Tekirdağ Namık Kemal University, 59860 Tekirdağ, Turkey 
773 0 |t Buildings  |g vol. 15, no. 20 (2025), p. 3667-3691 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265841281/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265841281/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265841281/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch