Machine Learning-Driven Security and Privacy Analysis of a Dummy-ABAC Model for Cloud Computing

Guardado en:
書目詳細資料
發表在:Computers vol. 14, no. 10 (2025), p. 420-441
主要作者: Baby, Marina
其他作者: Memon Irfana, Alvi, Fizza Abbas, Rajput Ubaidullah, Nabi Mairaj
出版:
MDPI AG
主題:
在線閱讀:Citation/Abstract
Full Text + Graphics
Full Text - PDF
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

MARC

LEADER 00000nab a2200000uu 4500
001 3265849538
003 UK-CbPIL
022 |a 2073-431X 
024 7 |a 10.3390/computers14100420  |2 doi 
035 |a 3265849538 
045 2 |b d20250101  |b d20251231 
084 |a 231447  |2 nlm 
100 1 |a Baby, Marina  |u Department of Information Technology, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Nawabshah 67450, Pakistan; mairajbhatti@sbbusba.edu.pk 
245 1 |a Machine Learning-Driven Security and Privacy Analysis of a Dummy-ABAC Model for Cloud Computing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The Attribute-Based Access Control (ABAC) model provides access control decisions based on subject, object (resource), and contextual attributes. However, the use of sensitive attributes in access control decisions poses many security and privacy challenges, particularly in cloud environment where third parties are involved. To address this shortcoming, we present a novel privacy-preserving Dummy-ABAC model that obfuscates real attributes with dummy attributes before transmission to the cloud server. In the proposed model, only dummy attributes are stored in the cloud database, whereas real attributes and mapping tokens are stored in a local machine database. Only dummy attributes are used for the access request evaluation in the cloud, and real data are retrieved in the post-decision mechanism using secure tokens. The security of the proposed model was assessed using a simulated threat scenario, including attribute inference, policy injection, and reverse mapping attacks. Experimental evaluation using machine learning classifiers (“DecisionTree” DT, “RandomForest” RF), demonstrated that inference accuracy dropped from ~0.65 on real attributes to ~0.25 on dummy attributes confirming improved resistance to inference attacks. Furthermore, the model rejects malformed and unauthorized policies. Performance analysis of dummy generation, token generation, encoding, and nearest-neighbor search, demonstrated minimal latency in both local and cloud environments. Overall, the proposed model ensures an efficient, secure, and privacy-preserving access control in cloud environments. 
653 |a Machine learning 
653 |a Datasets 
653 |a Cloud computing 
653 |a Privacy 
653 |a Inference 
653 |a Mapping 
653 |a Access control 
653 |a Cybersecurity 
653 |a Cardiology 
653 |a Decisions 
700 1 |a Memon Irfana  |u Department of Computer Systems Engineering, Quaid-e-Awam University of Science and Technology, Nawabshah 67450, Pakistan; irfanahameed@quest.edu.pk (I.M.); fizza_alvi@quest.edu.pk (F.A.A.); ubaidullah@quest.edu.pk (U.R.) 
700 1 |a Alvi, Fizza Abbas  |u Department of Computer Systems Engineering, Quaid-e-Awam University of Science and Technology, Nawabshah 67450, Pakistan; irfanahameed@quest.edu.pk (I.M.); fizza_alvi@quest.edu.pk (F.A.A.); ubaidullah@quest.edu.pk (U.R.) 
700 1 |a Rajput Ubaidullah  |u Department of Computer Systems Engineering, Quaid-e-Awam University of Science and Technology, Nawabshah 67450, Pakistan; irfanahameed@quest.edu.pk (I.M.); fizza_alvi@quest.edu.pk (F.A.A.); ubaidullah@quest.edu.pk (U.R.) 
700 1 |a Nabi Mairaj  |u Department of Information Technology, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Nawabshah 67450, Pakistan; mairajbhatti@sbbusba.edu.pk 
773 0 |t Computers  |g vol. 14, no. 10 (2025), p. 420-441 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265849538/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265849538/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265849538/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch