An Energy Saving MTPA-Based Model Predictive Control Strategy for PMSM in Electric Vehicles Under Variable Load Conditions

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computation vol. 13, no. 10 (2025), p. 231-250
1. Verfasser: Gao Lihua
Weitere Verfasser: Lv Xiaodong, Ma, Kai, Shi Zhihan
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3265849547
003 UK-CbPIL
022 |a 2079-3197 
024 7 |a 10.3390/computation13100231  |2 doi 
035 |a 3265849547 
045 2 |b d20251001  |b d20251031 
084 |a 231446  |2 nlm 
100 1 |a Gao Lihua  |u College of Electrical Engineering and Control Science, Nanjing Polytechnic Institute, Nanjing 210048, China; gaolihua@njpi.edu.cn (L.G.); mak@njpi.edu.cn (K.M.) 
245 1 |a An Energy Saving MTPA-Based Model Predictive Control Strategy for PMSM in Electric Vehicles Under Variable Load Conditions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To promote energy efficiency and support sustainable electric transportation, this study addresses the challenge of real-time and energy-optimal control of permanent magnet synchronous motors (PMSMs) in electric vehicles operating under variable load conditions, proposing a novel Laguerre-based model predictive control (MPC) strategy integrated with maximum torque per ampere (MTPA) operation. Traditional MPC methods often suffer from limited prediction horizons and high computational burden when handling strong coupling and time-varying loads, compromising real-time performance. To overcome these limitations, a Laguerre function approximation is employed to model the dynamic evolution of control increments using a set of orthogonal basis functions, effectively reducing the control dimensionality while accelerating convergence. Furthermore, to enhance energy efficiency, the MTPA strategy is embedded by reformulating the current allocation process using d- and q-axis current variables and deriving equivalent reference currents to simplify the optimization structure. A cost function is designed to simultaneously ensure current accuracy and achieve maximum torque per unit current. Simulation results under typical electric vehicle conditions demonstrate that the proposed Laguerre-MTPA MPC controller significantly improves steady-state performance, reduces energy consumption, and ensures faster response to load disturbances compared to traditional MTPA-based control schemes. This work provides a practical and scalable control framework for energy-saving applications in sustainable electric transportation systems. 
653 |a Load 
653 |a Electric vehicles 
653 |a Accuracy 
653 |a Torque 
653 |a Control algorithms 
653 |a Cost function 
653 |a Orthogonal functions 
653 |a Optimization 
653 |a Transportation systems 
653 |a Predictive control 
653 |a Basis functions 
653 |a Synchronous motors 
653 |a Variables 
653 |a Energy efficiency 
653 |a Laguerre functions 
653 |a Renewable energy 
653 |a Optimal control 
653 |a Real time 
653 |a Energy consumption 
653 |a Permanent magnets 
653 |a Energy conservation 
700 1 |a Lv Xiaodong  |u College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China; szh@njtech.edu.cn 
700 1 |a Ma, Kai  |u College of Electrical Engineering and Control Science, Nanjing Polytechnic Institute, Nanjing 210048, China; gaolihua@njpi.edu.cn (L.G.); mak@njpi.edu.cn (K.M.) 
700 1 |a Shi Zhihan  |u College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China; szh@njtech.edu.cn 
773 0 |t Computation  |g vol. 13, no. 10 (2025), p. 231-250 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265849547/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265849547/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265849547/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch