Substrate Temperature-Induced Crystalline Phase Evolution and Surface Morphology in Zirconium Thin Films Deposited by Pulsed Laser Ablation

Guardat en:
Dades bibliogràfiques
Publicat a:Coatings vol. 15, no. 10 (2025), p. 1198-1215
Autor principal: Berdimyrat, Annamuradov
Altres autors: Zikrulloh, Khuzhakulov, Khenner Mikhail, Terzic Jasminka, Gurgew Danielle, Er Ali Oguz
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3265855112
003 UK-CbPIL
022 |a 2079-6412 
024 7 |a 10.3390/coatings15101198  |2 doi 
035 |a 3265855112 
045 2 |b d20250101  |b d20251231 
084 |a 231445  |2 nlm 
100 1 |a Berdimyrat, Annamuradov  |u Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA 
245 1 |a Substrate Temperature-Induced Crystalline Phase Evolution and Surface Morphology in Zirconium Thin Films Deposited by Pulsed Laser Ablation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Zirconium (Zr) thin films were deposited on silicon (Si) substrates via pulsed laser deposition (PLD) using a 248 nm excimer laser. The effects of substrate temperature on film morphology and crystallinity were systematically investigated. X-ray diffraction (XRD) revealed that the Zr(100) plane exhibited the strongest orientation at 400 °C while Zr (002) was maximum at 500 °C. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses demonstrated an increase in surface roughness with temperature, with the smoothest surface observed at lower temperatures and significant island formation at 500 °C due to the transition to 3D growth. At 500 °C, interdiffusion effects led to the formation of zirconium silicide at the Zr/Si interface. To further interpret the experimental findings, computational modeling was employed to analyze the transition from 2D layer-by-layer growth to 3D island formation at elevated temperatures. Using a multi-parameter kinetics-free model based on free energy minimization, the critical film thickness for this transition was determined to be ~1–2 nm, aligning well with experimental observations. A separate kinetic model of island nucleation and growth predicts that this shift is driven by the kinetics of adatom surface diffusion. Additionally, the kinetic simulations revealed that, at 400 °C, adatom diffusivity optimally balances crystallization and surface energy minimization, yielding the highest film quality. At 500 °C, the rapid increase in diffusivity leads to the proliferation of 3D islands, consistent with the roughness trends observed in SEM and AFM data. These findings underscore the critical role of deposition parameters in tailoring Zr thin films for applications in advanced coatings and electronic devices. 
651 4 |a Germany 
653 |a Pulsed laser deposition 
653 |a Nucleation 
653 |a Morphology 
653 |a Crystallization 
653 |a Zirconium 
653 |a Island creation 
653 |a Silicon substrates 
653 |a Thin films 
653 |a Diffusivity 
653 |a Free energy 
653 |a Silicides 
653 |a High temperature 
653 |a Excimer lasers 
653 |a Pulsed lasers 
653 |a Adatoms 
653 |a Excimers 
653 |a Atomic force microscopy 
653 |a Interdiffusion 
653 |a Lasers 
653 |a Temperature 
653 |a Surface diffusion 
653 |a Optimization 
653 |a Microscopy 
653 |a Chemical vapor deposition 
653 |a Film thickness 
653 |a Surface roughness 
653 |a Kinetics 
653 |a Alloys 
653 |a Ablation 
653 |a Heat resistance 
653 |a Scanning electron microscopy 
653 |a Parameters 
653 |a Surface energy 
700 1 |a Zikrulloh, Khuzhakulov  |u Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA 
700 1 |a Khenner Mikhail  |u Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101, USA 
700 1 |a Terzic Jasminka  |u Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA 
700 1 |a Gurgew Danielle  |u Universities Space Research Association, NASA Marshall Space Center, Huntsville, AL 35805, USA 
700 1 |a Er Ali Oguz  |u Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA 
773 0 |t Coatings  |g vol. 15, no. 10 (2025), p. 1198-1215 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265855112/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265855112/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265855112/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch