Determinants of Chatbot Brand Trust in the Adoption of Generative Artificial Intelligence in Higher Education

Zapisane w:
Opis bibliograficzny
Wydane w:Education Sciences vol. 15, no. 10 (2025), p. 1389-1413
1. autor: Falebita, Oluwanife Segun
Kolejni autorzy: Abah Joshua Abah, Ayoola, Asanre Akorede, Abiodun Taiwo Oluwadayo, Ayanwale, Musa Adekunle, Ayanwoye, Olubunmi Kayode
Wydane:
MDPI AG
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3265872315
003 UK-CbPIL
022 |a 2227-7102 
022 |a 2076-3344 
024 7 |a 10.3390/educsci15101389  |2 doi 
035 |a 3265872315 
045 2 |b d20250101  |b d20251231 
084 |a 231457  |2 nlm 
100 1 |a Falebita, Oluwanife Segun  |u Mathematics, Science and Technology Education Department, Faculty of Education, University of Zululand, KwaDlangezwa 3886, Richards Bay Private Bag X1001, South Africa; abahj@unizulu.ac.za (J.A.A.); asanrea@unizulu.ac.za (A.A.A.) 
245 1 |a Determinants of Chatbot Brand Trust in the Adoption of Generative Artificial Intelligence in Higher Education 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The use of generative artificial intelligence (GenAI) chatbots in brands is growing exponentially, and higher education institutions are not unaware of how such tools effectively shape the attitudes and behavioral intentions of students. These chatbots are able to synthesize an enormous amount of data input and can create contextually aware, human-like conversational content that is not limited to simple scripted responses. This study examines the factors that determine chatbot brand trust in the adoption of GenAI in higher education. By extending the Technology Acceptance Model (TAM) with the construct of brand trust, the study introduces a novel contribution to the literature, offering fresh insights into how trust in GenAI chatbots is developed within the academic context. Using the convenience sampling technique, a sample of 609 students from public universities in North Central and Southwestern Nigeria was selected. The collected data were analyzed via partial least squares structural equation modelling. The results indicated that attitudes toward chatbots determine behavioral intentions and GenAI chatbot brand trust. Surprisingly, behavioral intentions do not affect GenAI chatbot brand trust. Similarly, the perceived ease of use of chatbots does not determine behavioral intention or attitudes toward GenAI chatbot adoption but rather determines perceived usefulness. Additionally, the perceived usefulness of chatbots affects behavioral intention and attitudes toward GenAI chatbot adoption. Moreover, social influence affects behavioral intention, perceived ease of use, perceived usefulness and attitudes toward GenAI chatbot adoption. The implications of the findings for higher education institutions are that homegrown GenAI chatbots that align with the principles of the institution should be developed, creating an environment that promotes a positive attitude toward these technologies. Specifically, the study recommends that policymakers and university administrators establish clear institutional guidelines for the design, deployment, and ethical use of homegrown GenAI chatbots, ensuring alignment with educational goals and safeguarding student trust. 
653 |a Behavior 
653 |a Higher education 
653 |a Accuracy 
653 |a Educational technology 
653 |a University students 
653 |a Distance learning 
653 |a Generative artificial intelligence 
653 |a Chatbots 
653 |a Personalized learning 
653 |a Decision making 
653 |a Technology Acceptance Model 
653 |a Attitudes 
653 |a Structural equation modeling 
653 |a Policy making 
653 |a Brands 
653 |a Literature Reviews 
653 |a Influence of Technology 
653 |a Educational Change 
653 |a Access to Information 
653 |a Beliefs 
653 |a Intention 
653 |a Educational Objectives 
653 |a Electronic Learning 
653 |a Artificial Intelligence 
653 |a Data Analysis 
653 |a Social Influences 
653 |a Outcomes of Education 
653 |a Language Processing 
653 |a Learner Engagement 
700 1 |a Abah Joshua Abah  |u Mathematics, Science and Technology Education Department, Faculty of Education, University of Zululand, KwaDlangezwa 3886, Richards Bay Private Bag X1001, South Africa; abahj@unizulu.ac.za (J.A.A.); asanrea@unizulu.ac.za (A.A.A.) 
700 1 |a Ayoola, Asanre Akorede  |u Mathematics, Science and Technology Education Department, Faculty of Education, University of Zululand, KwaDlangezwa 3886, Richards Bay Private Bag X1001, South Africa; abahj@unizulu.ac.za (J.A.A.); asanrea@unizulu.ac.za (A.A.A.) 
700 1 |a Abiodun Taiwo Oluwadayo  |u Department of Mathematics, Tai Solarin University of Education, Ijebu Ode P.M.B 2118, Nigeria; abiodunto@tasued.edu.ng 
700 1 |a Ayanwale, Musa Adekunle  |u Department of Mathematics, Science and Technology Education, University of Johannesburg, Auckland Park, Johannesburg P.O. Box 524, South Africa; ayanwalea@uj.ac.za 
700 1 |a Ayanwoye, Olubunmi Kayode  |u Science Education Department, Faculty of Education, Federal University Oye-Ekiti, Oye P.M.B. 373, Nigeria; olubunmi.ayanwoye@fuoye.edu.ng 
773 0 |t Education Sciences  |g vol. 15, no. 10 (2025), p. 1389-1413 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265872315/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265872315/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265872315/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch