A Taxonomy of Robust Control Techniques for Hybrid AC/DC Microgrids: A Review

Guardado en:
Detalles Bibliográficos
Publicado en:Eng vol. 6, no. 10 (2025), p. 267-298
Autor principal: Parvizi Pooya
Otros Autores: Amidi, Alireza Mohammadi, Zangeneh, Mohammad Reza, Jordi-Roger, Riba, Jalilian Milad
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3265896506
003 UK-CbPIL
022 |a 2673-4117 
024 7 |a 10.3390/eng6100267  |2 doi 
035 |a 3265896506 
045 2 |b d20250101  |b d20251231 
100 1 |a Parvizi Pooya  |u Department of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; pxp046@alumni.bham.ac.uk 
245 1 |a A Taxonomy of Robust Control Techniques for Hybrid AC/DC Microgrids: A Review 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating points, often fail to maintain stability under large load and generation fluctuations. Optimization-based methods are highly sensitive to model inaccuracies and parameter uncertainties, reducing their reliability in dynamic environments. Intelligent approaches, such as fuzzy logic and ML-based controllers, provide adaptability but suffer from high computational demands, limited interpretability, and challenges in real-time deployment. These limitations highlight the need for robust control strategies that can guarantee reliable operation despite disturbances, uncertainties, and varying operating conditions. Numerical performance indices demonstrate that the reviewed robust control strategies outperform conventional linear, optimization-based, and intelligent controllers in terms of system stability, voltage and current regulation, and dynamic response. This paper provides a comprehensive review of recent robust control strategies for hybrid AC/DC microgrids, systematically categorizing classical model-based, intelligent, and adaptive approaches. Key research gaps are identified, including the lack of unified benchmarking, limited experimental validation, and challenges in integrating decentralized frameworks. Unlike prior surveys that broadly cover microgrid types, this work focuses exclusively on hybrid AC/DC systems, emphasizing hierarchical control architectures and outlining future directions for scalable and certifiable robust controllers. Also, comparative results demonstrate that state of the art robust controllers—including H∞-based, sliding mode, and hybrid intelligent controllers—can achieve performance improvements for metrics such as voltage overshoot, frequency settling time, and THD compared to conventional PID and droop controllers. By synthesizing recent advancements and identifying critical research gaps, this work lays the groundwork for developing robust control strategies capable of ensuring stability and adaptability in future hybrid AC/DC microgrids. 
653 |a Proportional integral derivative 
653 |a Robust control 
653 |a Dynamic response 
653 |a Distributed generation 
653 |a Adaptability 
653 |a Parameter sensitivity 
653 |a Voltage 
653 |a Optimization techniques 
653 |a Fuzzy logic 
653 |a Taxonomy 
653 |a Control systems 
653 |a Systems stability 
653 |a Parameter uncertainty 
653 |a Efficiency 
653 |a Electric power systems 
653 |a Control algorithms 
653 |a Electric potential 
653 |a Decision making 
653 |a Renewable energy sources 
653 |a Optimization 
653 |a Design 
653 |a Sliding mode control 
653 |a Performance indices 
653 |a Real time 
653 |a Controllers 
653 |a H-infinity control 
653 |a Comparative analysis 
700 1 |a Amidi, Alireza Mohammadi  |u Department of Electrical Engineering, Razi University, Kermanshah 6714414971, Iran; alireza.moamidi@gmail.com 
700 1 |a Zangeneh, Mohammad Reza  |u Pooya Power Knowledge Enterprise, Tehran 1466993771, Iran; m.zangeneh@alumni.sbu.ac.ir (M.R.Z.); jalilianm70@gmail.com (M.J.) 
700 1 |a Jordi-Roger, Riba  |u Department of Electrical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain 
700 1 |a Jalilian Milad  |u Pooya Power Knowledge Enterprise, Tehran 1466993771, Iran; m.zangeneh@alumni.sbu.ac.ir (M.R.Z.); jalilianm70@gmail.com (M.J.) 
773 0 |t Eng  |g vol. 6, no. 10 (2025), p. 267-298 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265896506/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265896506/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265896506/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch