How to Conduct AI-Assisted (Large Language Model-Assisted) Content Analysis in Information Science and Cyber Security Research

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 20 (2025), p. 4104-4126
Autor principal: Whitty, Monica Therese
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3265898367
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14204104  |2 doi 
035 |a 3265898367 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Whitty, Monica Therese 
245 1 |a How to Conduct AI-Assisted (Large Language Model-Assisted) Content Analysis in Information Science and Cyber Security Research 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The advent of Large Language Models (LLMs) has revolutionised natural language processing, providing unprecedented capabilities in text generation and analysis. This paper examines the utility of Artificial-Intelligence-assisted (AI-assisted) content analysis (CA), supported by LLMs, as a methodological tool for research in Information Science (IS) and Cyber Security. It reviews current applications, methodological practices, and challenges, illustrating how LLMs can augment traditional approaches to qualitative data analysis. Key distinctions between CA and other qualitative methods are outlined, alongside the traditional steps involved in CA. To demonstrate relevance, examples from Information Science and Cyber Security are highlighted, along with a new example detailing the steps involved. A hybrid workflow is proposed that integrates human oversight with AI capabilities, grounded in the principles of Responsible AI. Within this model, human researchers remain central to guiding research design, interpretation, and ethical decision-making, while LLMs support efficiency and scalability. Both deductive and inductive AI-assisted frameworks are introduced. Overall, AI-assisted CA is presented as a valuable approach for advancing rigorous, replicable, and ethical scholarship in Information Science and Cyber Security. This paper contributes to prior LLM-assisted coding work, proposing that this hybrid model is preferred over a fully manual content analysis. 
653 |a Language 
653 |a Data analysis 
653 |a Qualitative analysis 
653 |a Validity 
653 |a Science 
653 |a Large language models 
653 |a Hypotheses 
653 |a Social networks 
653 |a Content analysis 
653 |a Cybersecurity 
653 |a Discourse analysis 
653 |a Researchers 
653 |a Audit trails 
653 |a Natural language processing 
653 |a Ethics 
653 |a Generative artificial intelligence 
653 |a Chatbots 
653 |a Validation studies 
653 |a Information science 
773 0 |t Electronics  |g vol. 14, no. 20 (2025), p. 4104-4126 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265898367/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3265898367/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265898367/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch