Network Traffic Prediction for Multiple Providers in Digital Twin-Assisted NFV-Enabled Network

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Electronics vol. 14, no. 20 (2025), p. 4129-4156
المؤلف الرئيسي: Hu, Ying
مؤلفون آخرون: Liu, Ben, Li, Jianyong, Jia Linlin
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3265899048
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14204129  |2 doi 
035 |a 3265899048 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Hu, Ying 
245 1 |a Network Traffic Prediction for Multiple Providers in Digital Twin-Assisted NFV-Enabled Network 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This manuscript investigates the network traffic prediction problem, with the aim of predicting network traffic on a network function virtualization (NFV)-enabled and digital twin (DT)-assisted physical network for network service providers and network resource providers. It faces several key challenges like data privacy and different variation patterns of network traffic for multiple service function chain (SFC) requests. In view of this, we address the network traffic prediction problem by jointly considering the above key challenges in this manuscript. Specifically, we formulate the virtual network function (VNF) migration and SFC placement problems as integer linear programming (ILP) that aim to maximize acceptance revenues, minimize network resource costs, minimize energy consumption, and minimize migration cost. Then, we define the Markov Decision Process (MDP) for the network traffic prediction problem, and propose a model and algorithm to solve the problem. The simulation results demonstrate that our algorithms outperform benchmark algorithms and achieve a better performance. 
653 |a Network function virtualization 
653 |a Linear programming 
653 |a Technological change 
653 |a Collaboration 
653 |a Deep learning 
653 |a Integer programming 
653 |a Mathematical models 
653 |a Markov processes 
653 |a Communications traffic 
653 |a Optimization 
653 |a Virtual networks 
653 |a Privacy 
653 |a Localization 
653 |a Efficiency 
653 |a Innovations 
653 |a Scheduling 
653 |a Energy costs 
653 |a Digital twins 
653 |a Neural networks 
653 |a Manuscripts 
653 |a Algorithms 
653 |a Quality of service 
653 |a Energy consumption 
653 |a Predictions 
653 |a Resource management 
700 1 |a Liu, Ben 
700 1 |a Li, Jianyong 
700 1 |a Jia Linlin 
773 0 |t Electronics  |g vol. 14, no. 20 (2025), p. 4129-4156 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265899048/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265899048/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265899048/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch